100 великих загадок природы - Николай Непомнящий
Шрифт:
Интервал:
Закладка:
Другими словами, даже если генетикам удастся полностью истолковать весь геном, они – вернемся к нашему кулинарному сравнению – окажутся в положении посетителя ресторана, который заказал несколько блюд из предложенного ему меню, но, когда их список был отправлен на кухню, с удивлением узнал, что на этой «протеиновой кухне» все равно приготовят «что-нибудь на свое усмотрение», выбрав такие добавки и приправы, о каких в заказе не было и речи.
По аналогии с геномом – совокупностью всех человеческих генов – сумму всех протеиновых молекул, сформированных в клетке в определенный момент времени, называют «протеомом». Геном говорит, какие процессы могут теоретически протекать внутри данной клетки, а протеом, судя по имеющимся в наличии протеинам, подсказывает, что в самом деле здесь происходит.
Геном имеет неизменный вид – протеом постоянно меняется. Ведь на состав протеинов влияют самые разные факторы: выбор питательных веществ и приток кислорода, перенесенный внезапно стресс, принятые по рецепту лекарства, и даже механическое давление. Организм все время реагирует на состояние окружающей среды, пытаясь сохранить физиологическое равновесие (например, нормальное кровяное давление или температуру тела, равную 36,6 °C). Для этого приходится нейтрализовать влияние внешних факторов, которые стремятся, наоборот, вывести организм из равновесия. Эта борьба протекает с переменным успехом: например, при недоедании приходится тратить накопленные прежде питательные вещества; если же в них наблюдается избыток, то можно отложить порцию их про запас. Все эти процессы связаны с синтезом, метаморфозом и разложением протеинов. Итак, «протеом» – это опись имущества клетки по состоянию на данную минуту или моментальное фото, запечатлевшее одно из мгновений в жизни клетки.
Анализировать протеины труднее, чем подсчитывать и оприходовать гены. Ведь протеины подчас изменчивы, как Протей; они меняют свою структуру, если меняется окружающая их среда, и, в отличие от ДНК, их вряд ли размножишь в пробирке. Если расшифровка генома (точнее, составление его карты) была автоматизирована так, что «с ней справилась бы любая обезьяна», как насмешливо заметил нобелевский лауреат Джеймс Уотсон, один из открывателей структуры ДНК, то методы анализа протеинов гораздо сложнее.
Однако, невзирая на эти проблемы, все больше университетских ученых берется за честолюбивую задачу – анализ протеома. Их увлекают новые методы лечения больных и синтез новых лекарств. Если удастся полностью описать протеомы различных клеток, то можно было бы и фиксировать изменения, происходящие с ними. Очень важно знать, что происходит с клетками человека, когда он сидит на диете или занимается спортом, принимает лекарства или получает травму. А как меняется запас протеинов с возрастом? А чем ответит протеом на появление в организме раковой опухоли?
Отвечая на вопрос, для чего нужна расшифровка генома, ученые неизменно вспоминали, что знание генов поможет оберечь человека от наследственных недугов. Однако не все болезни передаются нам по наследству. Многие никак не связаны с «родовым проклятием». Выявить эти болезни в зародыше можно, лишь узнав, как внезапно изменился состав протеинов внутри наших клеток. Поэтому ученые стремятся понять, какие протеины неожиданно появляются в организме при том или ином недуге, постигшем его, а какие, наоборот, сразу же исчезают. По этим переменам в перечне протеинов можно узнать о подспудных процессах, начавшихся в организме. Узнать – и вовремя вмешаться!
Таким образом, одну из важнейших целей, стоящих перед учеными, занятыми анализом протеома, можно сформулировать так: поиск характерных изменений протеома, присущих различным видам заболеваний. Это облегчит диагностику (позволит, например, распознавать разные виды опухолей) и поможет избежать неправильного лечения. В то же время собранные сведения дают возможность выбрать четко обоснованную терапию. Болезнь можно будет лечить применительно к анатомии и физиологии данного конкретного человека. Наконец, упомянем еще одну причину, по которой биохимики увлеченно занимаются протеомом: в клетках человека имеется множество совершенно непонятных протеинов – лишь тщательное наблюдение за ними позволит уяснить, для чего они нужны.
Но как упростить этот метод, чтобы можно было быстро анализировать содержимое клетки?
Чтобы увидеть состав протеома, ученые прибегают к двухмерному гелевому электрофорезу. Процедура эта протекает в два этапа. Сперва протеины клетки сортируются по их заряду. Затем они попадают в полимерный гель. Он играет роль сита: здесь протеины разделяются по их величине. Затем их маркируют; в прозрачном растворе хорошо видны крохотные черные, синие или флуоресцирующие пятнышки. Вот так можно составить что-то вроде визитной карточки данной клетки, – карточки, в которой примерно указан состав протеинов. Если человек заболеет, узор пятен на «карточке» – электрофореграмме – изменится. Регулярно сравнивая протеомы больной и здоровой клетки, можно совсем по-иному взглянуть на течение болезни и процессы, ей сопутствующие.
Чтобы распознать, какие протеины скрыты за красочными точками, пятнающими «визитную карточку», биохимики придумали новый метод. С помощью особых «режущих ферментов» можно разложить любой неизвестный нам протеин на крохотные составляющие – их легче анализировать. Так появляется новая картинка, ведь у каждого протеина свой особый набор элементов.
Этот процесс можно не только наблюдать в лаборатории, но и имитировать на компьютере. Когда речь идет об уже известных протеинах, ученые располагают банком данных, где собраны сведения о том, как выглядят продукты разложения того или иного белка под действием определенного фермента. Сравнивая элементы, полученные в пробирке, с каталогом элементов, можно установить, какой протеин был в пробирке. Если ничего похожего в каталоге не нашлось, то с помощью масс-спектрометра исследуют фрагменты протеина.
Ученые стремятся повысить чувствительность этого метода, ведь количество протеинов, которое можно выделить из геля, очень мало. Уже сейчас точность методов такова, что можно идентифицировать миллионную долю миллиграмма.
Впрочем, как и в случае с расшифровкой генома, слышны критические голоса. Раздражает, например, что столько денег тратится на поиски иголки в стоге сена. Ведь по оценкам биохимиков, в сложных клетках насчитывается до 30 тысяч протеинов. Функции большинства этих белковых молекул пока неизвестны.
Вальтер Шуберт из Магдебургского университета предлагает другую методику. Он считает ненужным разлагать протеин для его идентификации. С помощью запатентованной недавно лазерной технологии он исследует сети, свитые внутри клетки крупными протеинами. Его интересует не состав протеинов, а то, как они ведут себя, реагируя на изменения в организме. Действуя по такой схеме, можно довольно быстро выявить важнейшие протеины, которые отвечают за ту или иную болезнь.
Кстати, вместе с коллегами Шуберт сумел обнаружить в таком вот ключевом протеине, что встречается в клетках опухолей, особую «ориентационную память», которая дает им возможность образовывать в организме метастазы.