Курс на Марс. Самый реалистичный проект полета к Красной планете - Роберт Зубрин
Шрифт:
Интервал:
Закладка:
Итак, по оценкам БВИИ, вероятность появления онкологических заболеваний с летальным исходом составляет 1,8 % в течение тридцати лет на каждые полученные 100 бэр. Если женщина-астронавт за 2,5 года марсианской миссии получит дозу в 50 бэр и после возвращения проживет тридцать лет, вероятность смертельно заболеть раком из-за воздействия радиации составит 50/100 × 1,81 % = 0,905 %. (Вероятность смертельно заболеть раком в течение одного года будет в тридцать раз ниже, то есть составит 0,03 %. Риск заболеть раком из-за воздействия радиации непосредственно в ходе миссии сам по себе практически нулевой.) Если астронавт – мужчина, вероятность будет немного меньше, 0,68 %, так как мужчины не болеют раком молочной железы. Учитывая, что астронавты не курят, вероятность того, что они умрут от рака, если не полетят на Марс, близка к 20 %. Следовательно, учитывая дозу, связанную с полетом, вероятность заболеть раком вырастет с 20 % до чуть менее чем 21 %.
Таблица 5.1. Оценки риска развития рака из-за хронического воздействия радиации общей мощностью 100 бэр
Выше я упоминал хроническую (не разовую) дозу в 50 бэр, которая может быть получена за два с половиной года марсианской миссии. Возникает вопрос: как параметры оборудования, доступного сегодня для пилотируемой марсианской миссии, способны повлиять на ожидаемые дозы облучения, которые может получить экипаж?
Есть два типа источников радиации, которые могут повлиять на астронавтов в марсианской миссии: солнечные вспышки и космические лучи.
Солнечные вспышки состоят из потоков протонов, вырывающихся из Солнца нерегулярно в непредсказуемые интервалы времени порядка раза в год. За несколько часов совершенно незащищенный астронавт может получить от одной солнечной вспышки дозу в сотни бэр, а этого, как мы уже знаем, достаточно, чтобы вызвать лучевую болезнь или даже смерть. Тем не менее частицы, составляющие солнечную вспышку, по отдельности могут нести энергию около одного миллиона электрон-вольт, и их нетрудно остановить умеренным слоем защиты. Например, если мы рассмотрим три крупнейшие в истории зарегистрированные солнечные вспышки, произошедшие в феврале 1956 года, ноябре 1960 года и августе 1972 года, мы обнаружим, что дозы, которые мог получить астронавт, защищенный только корпусом межпланетного космического корабля, как наш хаб (который вместе с обшивкой, мебелью, различными инженерными системами, оборудованием и другими объектами действует как защитный слой с поверхностной плотностью около 5 граммов на квадратный сантиметр массы, распределенной по его периферии, чтобы оградить обитателей), усреднились бы примерно до 38 бэр. А если бы астронавт ушел в кладовую хаба, которая одновременно является убежищем (поверхностная плотность экранирующей обшивки хаба «Марс Директ» составляет около 35 граммов на квадратный сантиметр, рис. 5.1), слой запасов уменьшил бы дозу приблизительно до 8 бэр [18, 19, 20]. Если бы астронавт сидел в хабе на Марсе во время вспышки, мощность которой была бы усредненной по сравнению с названными историческими случаями, он бы получил дозу около 10 бэр, если бы находился за пределами склада, или 3 бэр на складе. (Дозы радиации на поверхности Марса намного ниже, потому что атмосфера и поверхность планеты защищают от большей части излучения.)
Космические лучи несут различные дозы. Поскольку они состоят из частиц с энергиями до миллиардов электрон-вольт, для их остановки нужна обшивка толщиной в метры, то есть защититься от космических лучей во время межпланетного перелета практически невозможно. На Марсе, однако, сама планета поглощает все космические лучи, идущие снизу, а с помощью мешков с песком можно блокировать, по меньшей мере часть космических лучей, падающих на хаб сверху.
Рис. 5.1. Схема жилого модуля «Марс Директ». В случае солнечной вспышки кладовую можно использовать как убежище для экипажа
Кроме того, в отличие от солнечных вспышек, космические лучи не появляются в виде эпизодических потоков частиц. Скорее, они похожи на мелкий затяжной дождь из частиц. Астронавт, находящийся в хабе во время полета через межпланетное пространство, получит от космических лучей дозу, которая колеблется от 20 до 50 бэр в год, в зависимости от того, в какой части своего одиннадцатилетнего цикла активности находится Солнце. Самые большие дозы радиации от космических лучей поступают во время минимальной солнечной активности, тогда как во время так называемого солнечного максимума магнитное поле Солнца простирается далеко и фактически работает для всей Солнечной системы экраном против космических лучей из межзвездного пространства. Однако в среднем за год межпланетного полета можно получить от космических лучей дозу в 35 бэр. Если бы на Марсе экипаж не был защищен от них, доза составила бы около 9 бэр в год, в то время как под защитным навесом (мешки с песком на крыше хаба) она равнялась бы около 6 бэр в год. Поскольку на Марсе экипаж будет проводить основное, но не все время в хабе, среднее значение дозы от космических лучей в 7 бэр в год можно считать разумным для этого этапа миссии. Если объединить приведенные данные и рассчитать варианты для миссии в соединении и в противостоянии, предположив, что солнечные вспышки мощностью, равной среднему арифметическому мощностей трех сильнейших вспышек в истории, во время миссии происходят один раз в год, мы получим предсказанные дозы облучения, показанные в табл. 5.2.
Таблица 5.2. Дозы облучения, получаемые во время марсианских миссий
Как уже говорилось в предыдущей главе, для миссии «Марс Директ» выбрана траектория в соединении, оценочная доза радиации для всей длительности миссии в этом случае варьируется между 41 и 62 бэр, в зависимости от того, находится ли Солнце в минимуме или максимуме одиннадцатилетнего цикла активности. Таким образом, оценка в 50 бэр для миссии на Марс в оба конца реалистична и отражает среднее значение для условий минимума и максимума солнечной активности. Мы также можем видеть, что в худшем случае ожидаемая доза от солнечных вспышек для миссии «Марс Директ» составляет около 5 бэр, что намного ниже порогового значения разовой дозы в 75 бэр, вызывающего лучевую болезнь.
Глядя на табл. 5.2, обратите внимание, насколько смешны аргументы в пользу миссии в противостоянии с точки зрения уменьшения дозы радиации. При значительно большей массе и стоимости и намного более низкой научной ценности миссии (из-за ограниченного времени пребывания на Марсе) полная доза радиации, которая будет получена при миссии в противостоянии, больше, чем для миссии в соединении, а ожидаемая разовая доза от солнечных вспышек на 75 % выше. Но в принципе хронические дозы, которые можно получить на любой из этих траекторий, предсказуемы, и ими можно пренебречь по сравнению со всеми другими рисками пилотируемых космических полетов. Единственная реальная опасность, связанная с радиацией, – это возможность солнечной вспышки с чудовищной разовой дозой, которая намного превышает все, что было измерено за последние пятьдесят лет. Вероятность этого намного выше для миссии в противостоянии из-за близкого прохода мимо Солнца. То есть аргумент об опасности радиации несостоятелен, и миссия в противостоянии не лучше выбранной для программы «Марс Директ» миссии в соединении или даже использования траектории минимальных энергозатрат. Как раз наоборот, с точки зрения радиационной опасности траектория в противостоянии – худший возможный выбор.