Книги онлайн и без регистрации » Историческая проза » Гений. Жизнь и наука Ричарда Фейнмана - Джеймс Глик

Гений. Жизнь и наука Ричарда Фейнмана - Джеймс Глик

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 40 41 42 43 44 45 ... 183
Перейти на страницу:

2 Силу взаимодействия, с которой один заряд действует на другой, можно рассчитать по формуле силы Лоренца, в предположении, что поля создаются первым зарядом, в соответствии с уравнением Максвелла.

Сформулировать третий принцип оказалось сложнее. Фейнман попробовал:

3 Фундаментальные уравнения инвариантны относительно изменения знака времени.

И потом, более точно:

3 Фундаментальные (микроскопические) явления в природе симметричны (инвариантны) по отношению к чередованию прошлого и будущего.

Паули, несмотря на свой скептицизм, оценил важность третьего принципа. Он обратил внимание Фейнмана и Уилера на то, что еще Эйнштейн упоминал о симметрии прошлого и будущего в своей малоизвестной работе 1909 года. Уилер действовал решительно. Он позвонил и договорился о встрече в отделанном белым сайдингом доме № 112 по Мерсер-стрит[92].

Эйнштейн благожелательно встретил двух молодых амбициозных физиков, как принимал и большинство ученых, посещавших его. Они прошли в кабинет, где Эйнштейн сидел за столом. Фейнман поразился, насколько точно реальность соответствовала легендам. Перед ними сидел приятный мягкий человек. На нем был свитер без рубашки и туфли без носков. Все знали, что Эйнштейна огорчали не имеющие явно выраженных причин нестыковки в квантовой механике. Сам же он последнее время по большей части писал длинные нудные письма мировым лидерам, в которых выглядел скорее чудаком, чем почитаемым ученым. Неприятие новой физики выставляло его, как он сам говорил, «упрямым еретиком» и «человеком закостенелым, оглохшим и ослепшим с годами». Но теория, представленная Уилером и Фейнманом, тогда еще не была квантовой теорией. В ней использовались только классические уравнения поля без квантово-механических поправок, которые, и Уилер с Фейнманом знали это, потребуется ввести в дальнейшем. Так что Эйнштейн не увидел никаких нестыковок и заметил, что и сам признавал существование запаздывающих и опережающих волн, и даже припомнил небольшую статью, опубликованную в 1909 году, в которой выразил свое несогласие со швейцарским коллегой Вальтером Ритцем. Ритц утверждал, что правильная теория поля должна учитывать только запаздывающие волны, а опережающие волны следует признать недопустимыми, какими бы безобидными ни выглядели уравнения. Эйнштейн же не видел никаких причин исключать опережающие волны. Он считал, что основные уравнения не позволяют объяснить существование стрелы времени, которое на самом деле было обратимым.

Этого же мнения придерживались и Фейнман с Уилером. Их утверждение о симметрии прошлого и будущего привело к тому, что опережение и запаздывание стало казаться возможным. Но и в их теории присутствовал элемент асимметрии: запаздывающие поля играли более важную роль, чем опережающие. Однако эта асимметрия никак не проявлялась в уравнениях. Ее появление обусловливалось тем, что близлежащие абсорберы располагались беспорядочно и хаотично, а стремление к беспорядку — самое универсальное проявление стрелы времени (согласно второму закону термодинамики). Фильм, показывающий, как капля чернил растворяется в стакане воды, казался нелепым, когда его прокручивали назад.

Но в то же время фильм, отслеживающий микроскопическое перемещение любой молекулы чернил, будет смотреться одинаково, независимо от того, как он воспроизводится — как обычно или в обратном направлении. Случайные движения каждой отдельной молекулы чернил обратимы, но общая диффузия — нет. То есть система обратима на микроскопическом уровне и необратима на макроскопическом. Все дело в хаосе и вероятностях. В принципе, можно допустить, что отдельные, свободно перемещающиеся молекулы чернил могут сформировать каплю. Однако вероятность этого события ничтожно мала. Во вселенной Фейнмана и Уилера точно таким же невероятным стало предположение, что беспорядок в абсорбере определяет направление течения времени. Фейнман попытался обстоятельно объяснить эту гипотезу, изложив ее на 22 страницах работы, написанной в начале 1941 года. Он отметил, что необходимо различать два вида необратимости. Последовательность природных явлений будет считаться микроскопически необратимой, если последовательность явлений в обратном временном порядке не может осуществиться с точностью до мельчайших деталей. Если же в макромасштабе вероятности возникновения исходной последовательности и последовательности, обратной ей во времени, различаются на порядок, то явление будет считаться макроскопически необратимым… Авторы этой работы считают, что все физические явления микроскопически обратимы и что все явно макроскопические — необратимы.

Даже сейчас принцип обратимости ошеломляет и кажется сомнительным, потому что идет вразрез с ощущением однонаправленного течения времени, которое ввел в науку Ньютон. Фейнман же последним своим предложением привлек внимание Уилера. «Профессор Уилер, — написал он, после чего самонадеянно зачеркнул слово “профессор”, — это довольно масштабное утверждение. Возможно, вы с ним не согласитесь. Р. Ф. Ф.».

Уилер тем временем проштудировал литературу и обнаружил несколько неявных прецедентов их модели поглощения. Сам Эйнштейн отмечал, что немецкий физик Хьюго Тетрод предположил в работе, опубликованной в журнале Zeitschrift für Physik в 1922 году, что излучение следует рассматривать в контексте взаимодействия источника и поглотителя: нет поглотителя, нет излучения.

«Солнце не сияло бы, если бы оно было единственным космическим телом и никакие другие тела не могли поглотить его излучение… Если, например, я вчера вечером рассматривал через телескоп звезду, находящуюся на расстоянии 100 световых лет, то получается, что не только свет, который достиг моих глаз, был излучен сто лет назад, но и сама звезда или ее отдельные атомы уже сто лет назад знали, что тот, кто тогда даже не существовал, будет рассматривать ее вчера вечером в определенное время».

Более того, невидимое послание от далекой сверхзвезды (что в 20-х годах прошлого века казалось совершенно невероятным), излучение, произошедшее даже не десять, а сотни миллиардов лет назад, свободно преодолевающее Вселенную в течение большей части периода ее существования до момента столкновения с полупроводниковым приемником гигантского телескопа, также не могло произойти без взаимодействия с поглотителем. Тетрод заметил: «На последних страницах мы позволили нашим гипотезам выйти далеко за рамки математических доказательств». Уилер нашел в литературных источниках и другое странное, но довольно провокационное замечание, принадлежавшее Гилберту Льюису, специалисту в области физической химии, который придумал слово фотон. Льюиса тоже беспокоило, что в физике не рассматривается симметрия прошлого и будущего, подразумеваемая ее фундаментальными уравнениями. А с его точки зрения такая симметрия давала основание предполагать, что в процессе излучения источник и поглотитель симметричны.

«Рискну предположить, что атом никогда не излучает свет, если не существует другой атом, — писал Льюис. — Представить испускаемый атомом свет, если нет другого атома, поглощающего этот свет, так же абсурдно, как представить, что существует атом, поглощающий свет, без источника излучения. Я предлагаю отказаться от представления о том, что происходит просто излучение света, и вместо него ввести понятие трансмиссии или процесса обмена энергиями между двумя атомами».

1 ... 37 38 39 40 41 42 43 44 45 ... 183
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?