А что, если они нам не враги? Как болезни спасают людей от вымирания - Шарон Моалем
Шрифт:
Интервал:
Закладка:
То, насколько эти прыгающие гены поразили ученых, становится понятно даже по тем названиям, которые им дали: gypsy (цыган), mtanga (в переводе с суахили – бродяга), Castaway (изгой), Evelknievel (Ивелкнивел – в честь известного американского трюкача Ивела Книвела. – Примеч. пер.) и mariner (моряк) [116]. Это не конкретные гены какого-то определенного вида, и мы по-прежнему изучаем их разнообразные функции, но если учесть, что большинству генов достаются такие обезличенные названия, как ApoE4, то становится понятно, что многие ученые в восторге от этих генов и с нетерпением ждут, когда они нас еще чему-то научат. Есть даже ген под названием «Джордан» – дали ему это название исследователи из Вашингтонского университета в честь знаменитых прыжков Майкла Джордана.
В настоящее время ученые продолжают следовать по намеченному Мак-Клинток пути, ведущему прочь от убеждения в том, что гены представляют собой строгий набор инструкций и что мутации – а значит, и эволюция – происходят лишь в результате случайных и очень редких ошибок. По словам доктора Грегори Димиджиана из Техасского университета, «геном на протяжении долгого времени считался архивным проектом жизни – практически неизменяемым досье. Благодаря мобильным генетическим элементам [таким, как прыгающие гены Мак-Клинток] теперь мы воспринимаем его как эфемерную среду, претерпевающую непрекращающиеся трансформации» [117].
Другими словами, геному нравится постоянно менять планировку и двигать мебель.
* * *
Ряд проведенных в восьмидесятых и девяностых годах прошлого века исследований пролил еще больше света на способность генома крутить рулетку при выборе мутации [118]. Первое из них было описано ученым из Гарварда Джоном Кэрнсом в его провокационной статье в журнале Nature, где он заговорил о старой доброй теории про наследование приобретенных признаков – той самой теории, авторство которой было ошибочно приписано Ламарку. Кэрнс проводил исследования с Eschericiacoli – бактерией, известной нам как кишечная палочка.
Любопытно, что несмотря на то, что кишечная палочка заработала себе ужасающую репутацию, связанную с тем, что иногда ее вредные штаммы появляются в неподходящем месте и убивают людей, тем не менее она приносит больше пользы, чем вреда – это одна из тех самых бактерий, которые прямо сейчас пашут в нашем пищеварительном тракте.
Кишечная палочка – главная работяга пищеварительного тракта человека, представленная различными вариациями, одна из которых не способна от природы перерабатывать лактозу – сахар, входящий в состав молока. Ничто не создает для бактерии такую сильную угрозу – или такое сильное эволюционное давление, – как голод. Кэрнс решил лишить избегающую молока кишечную палочку любой еды, кроме лактозы. Гораздо быстрее, чем если бы это происходило по воле случая, у бактерии образовалась мутация, позволившая ей избавиться от непереносимости лактозы. Подобно Мак-Клинток с ее кукурузой, Кэрнс сообщил о том, что бактерия уделяла особое внимание определенным участкам своего генома – участкам, в которых мутация с наибольшей вероятностью могла оказаться полезной. Кэрнс пришел к заключению, что бактерия «выбирала» нужные ей мутации, а затем передавала приобретенную способность переваривать лактозу последующим поколениям бактерий. В своей статье, которая была приравнена к научной ереси, Кэрнс написал, что кишечная палочка «способна выбирать, какие мутации ей следует выполнить», и, возможно, «обладает механизмом наследования приобретенных признаков». Он прямым текстом заговорил о возможности наследования приобретенных признаков, по сути, дословно использовал эту самую формулировку. Это все равно что орать «Зенит – чемпион!» в секторе болельщиков «Спартака» в выездном матче, когда питерские гости выигрывают со счетом 3:0 у хозяев поля.
Такое громкое заявление заставило ученых погрузиться в свои чашки Петри, чтобы подтвердить, опровергнуть или хотя бы просто объяснить полученный Кэрнсом результат. Через год после публикации отчета Кэрнса Бэрри Холл, ученый из Рочестерского университета, предположил, что способность бактерии быстро развивать у себя необходимую ей для адаптации способность переваривать лактозу была связана с массовым увеличением частоты мутаций. Он назвал это гипермутацией – то есть сильно ускоренным процессом мутации, которая помогла бактерии получить необходимую для выживания мутацию в сто миллионов раз быстрее, чем это произошло бы при обычных условиях.
В 1997 году другие исследования добавили убедительности теории гипермутации. Значительное увеличение частоты мутаций было обнаружено, когда кишечную палочку лишили привычного ей рациона питания и окружили лактозой. Эти исследования продемонстрировали скачок мутаций по всему геному бактерии – было зафиксировано множество разнообразных мутаций, помимо той мутации, что помогла бактерии перебороть непереносимость лактозы и которую наблюдал в ходе своего эксперимента Кэрнс. Однако даже несмотря на то, что эти ученые и сообщили о гораздо большем количестве мутаций, чем было зафиксировано Кэрнсом, резкое увеличение количества мутаций все равно наталкивает на мысль о том, что геном способен заказывать мутации по требованию, когда обычного генетического программирования оказывается недостаточно. Группа французских исследователей во главе с Иваном Матиком из Национального института здравоохранения и медицинских исследований изучила сотни различных бактерий со всего света и обнаружила, что у них тоже запускался механизм ускоренной мутации, стоило их подвергнуть внешнему стрессу. Хотя доказательства постоянно прибавляются, вопрос о гипермутации, определенно, по-прежнему остается открытым.
* * *
Ген, названный в честь знаменитого баскетболиста, бактерии с непереносимостью лактозы, – все это, конечно, хорошо, но вам, наверное, не совсем понятно, какое отношение это имеет к нам с вами. Перед тем как погрузиться в обсуждение генофонда человека, давайте рассмотрим несколько основных правил, начав с общепринятого генетического принципа под названием «Барьер Вейсмана». Август Вейсман был биологом, в девятнадцатом веке разработавшим теорию зародышевой плазмы, которая разделяет клетки организма на две группы – зародышевые и соматические. Зародышевые клетки несут в себе информацию, которая передается потомству. Единственными зародышевыми клетками являются сперматозоиды и яйцеклетки. Все остальные клетки нашего организма – соматические: эритроциты, лейкоциты, клетки кожи, клетки волос и т. д.
Барьер Вейсмана разделяет зародышевые и соматические клетки: теория гласит, что информация из соматических клеток никогда не передается зародышевым клеткам. Таким образом, мутация, случившаяся по соматическую сторону этого барьера, скажем, в эритроцитах, не может проникнуть на зародышевую сторону, а значит, никогда не передастся детям. Однако это не означает, что мутация в зародышевых клетках не способна повлиять на соматические клетки потомства. Не забывайте, что инструкции по строительству всех клеток человеческого организма берут свое начало в зародышевых клетках родителей. Таким образом, мутация в зародышевых клетках, меняющая инструкцию, которая отвечает за цвет волос, повлияет на цвет волос у детей.
Барьер Вейсмана играет важнейшую роль в любых генетических исследованиях, однако некоторые исследования показали, что он не такой уж и непроницаемый, как это считалось ранее. Некоторые вирусы и ретровирусы, как вы вскоре сами сможете убедиться, способны проникать через барьер Вейсмана и передавать ДНК соматических клеток зародышевым. Если это на самом деле так, то открывается теоретическая возможность передачи приобретенных адаптаций будущим поколениям.