Открытия, которые изменили мир. Как 10 величайших открытий в медицине спасли миллионы жизней и изменили наше видение мира - Джон Кейжу
Шрифт:
Интервал:
Закладка:
Веха № 5
Сила пассивности: новые вакцины против дифтерии и столбняка
В конце XIX века дифтерия была одной из многих болезней, уносивших огромное количество человеческих жизней. Только в Германии от нее ежегодно погибало 50 тыс. детей. Дифтерию вызывают бактерии Corynebacterium diphtheriae, которые поражают верхние дыхательные пути, вызывая опасные для жизни отеки, наносят огромный вред сердцу и нервной системе. В 1888 г. ученые обнаружили, что смертоносное действие возбудителей дифтерии обусловлено токсином, который они вырабатывают. Через два года немецкий физиолог Эмиль фон Беринг и японский врач Китасато Сибасабуро сделали важнейшую находку: зараженные дифтерией животные начинают производить в ответ мощное вещество, способное нейтрализовать этот токсин. Иными словами, они вырабатывают антитоксин. За этой находкой последовало еще одно открытие, которое привело человечество к следующему этапу в истории вакцинации: если взятый у одного животного антитоксин ввести другому животному, он не только защитит от дифтерии, но и сможет вылечить болезнь, если она уже начиналась.
По распространенной легенде, первую инъекцию дифтерийного антитоксина произвели в Рождество 1891 г. больной девочке, однако на самом деле широкое распространение он получил лишь в конце 1892 г. Хотя антитоксины имели свои недостатки, ученым вскоре удалось разработать аналогичные средства от других серьезных болезней, в том числе столбняка.
Антитоксины стали серьезным шагом вперед в истории вакцинации, поскольку представляли совершенно новую концепцию: активность против пассивности. Активный иммунитет подразумевает, что вакцина стимулирует организм вступить в борьбу с болезнетворными микробами. Именно так поступают вакцины, о которых шла речь выше. А пассивный иммунитет основан на передаче защитных антител от одного человека или животного к другому. Кроме сывороток против дифтерии и столбняка, примером пассивного иммунитета может служить передача антител от матери к ребенку в процессе грудного вскармливания. Впрочем, у пассивного иммунитета есть один недостаток: со временем он ослабевает, в то время как активный в большинстве случаев долговременный.
Работа фон Беринга по созданию вакцины от дифтерии принесла ему в 1901 г. первую Нобелевскую премию в области физиологии и медицины. Вскоре это достижение привело других исследователей к решению следующего глобального вопроса, который витал в воздухе со времен Дженнера: живые, ослабленные и инактивированные, вакцины или антитоксины — как же они на самом деле работают?
Веха № 6
Срочное осмысление — и рождение иммунологии
Разумеется, за это время было выдвинуто множество гипотез о том, как работают вакцины. Например, Пастер и его последователи предложили теорию «истощения». Подразумевалось, что введенный микроб поглощает в организме «нечто», пока его запасы не иссякнут, после чего микроб погибает. Теория «пагубного препятствия» предполагала, что введенные микробы производят некие вещества, которые мешают их собственному развитию. Но обе теории опирались на одну и ту же ложную предпосылку, будто организм не играет в работе вакцины никакой роли и пассивно наблюдает со стороны за тем, как микробы сами роют себе яму. Обе теории были забыты с появлением новых данных и новых вакцин, а вскоре эпохальная работа двух ученых не только позволила по-новому осмыслить этот процесс, но и создала новое поле научной деятельности и принесла обоим в 1908 г. Нобелевскую премию.
Смена перспективы приводит к открытию иммунной системы
Истоки эпохального озарения русского микробиолога Ильи Мечникова восходят к 1882 г., когда он провел переломный эксперимент, в ходе которого отметил, что некоторые клетки обладают способностью мигрировать сквозь ткани в ответ на раздражение или повреждение. Более того, эти клетки способны окружать, поглощать и переваривать другие субстанции. Этот процесс Мечников назвал фагоцитозом, а клетки — фагоцитами (от греч. phagos «пожиратель» + cytos «клетка»). Изначально была выдвинута версия, что функция фагоцитоза — обеспечивать клетки питательными веществами. Однако Мечников заподозрил, что эти клетки не просто собрались на воскресный пикник. Его подозрение подтвердилось в ходе полемики с Робертом Кохом, который в 1876 г., наблюдая за сибирской язвой, интерпретировал увиденное как вторжение возбудителей болезни в белые кровяные тельца. Мечников взглянул на этот процесс иначе и предположил, что не бактерии сибирской язвы вторгаются в белые кровяные тельца, а наоборот, тельца окружают и поглощают бактерии. Мечников понял, что фагоцитоз — инструмент защиты, способ взять в плен и уничтожить захватчика. Проще говоря, он обнаружил краеугольный камень величайшей загадки организма — его иммунной системы, обеспечивающей защиту от заболеваний.
В 1887 г. Мечников классифицировал фагоциты на макрофаги и микрофаги и, что не менее важно, сформулировал основной принцип работы иммунной системы. Чтобы функционировать надлежащим образом, сталкиваясь с незнакомыми явлениями в организме, иммунная система задает очень простой, но в то же время исключительно важный вопрос: «свое» или «не свое»? Если «не свое» (а значит, впереди вирус натуральной оспы, бактерия сибирской язвы или дифтерийный токсин), иммунная система начинает атаку.
Новая теория раскрывает загадку иммунитета
Переломное открытие Пауля Эрлиха было, как и многие другие, связано с развитием техники, которое позволило миру увидеть то, что ранее было тайной. Для Эрлиха таким средством стали красители — химические составы для окрашивания клеток и тканей, позволившие обнаружить новые подробности их строения и функционирования. В 1878 г., когда Эрлиху было всего 24 года, с их помощью он смог описать несколько видов клеток иммунной системы, в том числе разные типы белых кровяных телец. В 1885 г. эти и другие находки подтолкнули Эрлиха к размышлениям над новой теорией питания клеток. Он предположил, что «боковые цепи» на внешней стороне клеток — сегодня мы называем их клеточными рецепторами — могут прикрепляться к определенным веществам и переносить их внутрь клетки.
Заинтересовавшись иммунологией, Эрлих задумался, может ли теория рецепторов объяснить принцип работы сывороток против дифтерии и столбняка. Как мы уже знаем, Беринг и Китасато обнаружили, что зараженное дифтерийными бактериями животное начинает вырабатывать антитоксин и его можно выделить и использовать в качестве защиты от болезни для других организмов. Выяснилось, что эти «антитоксины» на самом деле являются антителами — специфическими белками, которые производят клетки, чтобы найти и нейтрализовать дифтерийный токсин. В ходе новаторских опытов с антителами Эрлих размышлял о том, может ли теория рецепторов объяснить механизм действия антител. И вскоре он пришел к эпохальному озарению.
Изначально в рамках своей теории боковых цепей Эрлих предположил, что клетка обладает большим количеством разнообразных внешних рецепторов, каждый из которых прикрепляется к определенному питательному веществу. Позже он развил эту мысль и предположил, что вредоносные субстанции — бактерии и вирусы — могут имитировать питательные вещества и также прикрепляться к специфическим рецепторам. То, что происходит дальше, согласно гипотезе Эрлиха, объясняет, как клетки вырабатывают антитела против чуждого микроорганизма. Когда вредоносная субстанция прикрепляется к нужному рецептору, клетка получает возможность определить ее ключевые характеристики и начинает вырабатывать большое количество новых рецепторов, идентичных тому, который прикреплен к захватчику. Затем эти рецепторы отделяются от клетки и становятся антителами — высокоспецифическими белками, способными отыскивать вредоносные субстанции, прикрепляться и деактивировать их.