Болезни глаз - С. Трофимов
Шрифт:
Интервал:
Закладка:
Зрительный нерв образуют, сходясь, волокна (аксоны) ганглиозных клеток. Диск зрительного нерва состоит из пучков нервных волокон, поэтому эта область глазного дна не участвует в восприятии луча света и при исследовании поля зрения дает так называемое слепое пятно. Аксоны ганглиозных клеток внутри глазного яблока не имеют миелиновой оболочки, что обеспечивает прозрачность ткани.
В сетчатке нет чувствительных нервных окончаний. Сосуды, питающие сетчатку, проходят в глазное яблоко сзади, вблизи от места выхода зрительного нерва, и при ее воспалении видимой гиперемии глаза не бывает.
Зрительный нерв (одиннадцатая пара черепномозговых нервов) состоит примерно из 1 200 ООО аксонов ганглиозных клеток сетчатки. На зрительный нерв приходится около 38 % всех афферентных и эфферентных нервных волокон, имеющихся во всех черепно-мозговых нервах. Различают четыре части зрительного нерва: интрабульбарную (внутриглазную), орбитальную, внутриканальцевую (внутрикостную) и интракраниальную. Внутриглазная часть очень короткая (0,7 мм длиной). Диск зрительного нерва имеет всего 1,5 мм в диаметре и обусловливает физиологическую скотому — слепое пятно. В области диска зрительного нерва проходит центральная артерия и центральная пена сетчатки.
Орбитальная часть зрительного нерва имеет длину 25–30 мм. Сразу же за глазным яблоком зрительный нерв становится значительно толще (4,5 мм), поскольку его волокна получают миелиновую обкладку, поддерживающую ткань — нейроглию, а весь зрительный нерв — мозговые оболочки, твердую, мягкую и паутинную, между которыми циркулирует цереброспинальная жидкость. Эти оболочки слепо заканчиваются у глазного яблока, и при повышении внутричерепного давления диск зрительного нерва становится отечным и приподнимается над уровнем сетчатки, грибовидно выпячиваясь в стекловидное тело, возникает застойный диск зрительного нерва. Орбитальная часть зрительного нерва имеет длину 25–30 мм. В орбите зрительный нерв лежит свободно и делает 8-образный изгиб, что исключает его натяжение даже при значительных смещениях глазного яблока. В орбите зрительный нерв находится достаточно близко от придаточных пазух носа, поэтому при их воспалении могут возникать риногенные невриты. Внутри костного канала зрительный нерв проходит вместе с глазничной артерией. При утолщении и уплотнении ее стенки может происходить сдавление зрительного нерва, приводящее к постепенной атрофии его волокон. Волокна от носовых половин сетчаток перекрещиваются и переходят на противоположную сторону, а волокна от височных половин сетчаток продолжают свой ход, не пересекаясь. Внутри черепа волокна зрительных нервов обоих глаз совершают частичный перекрест, образуя хиазму.
Внутренняя полость глазного яблока содержит светопроводящие и светопреломляющие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело. Передняя камера глаза представляет собой пространство, ограниченное задней поверхностью роговицы, Передней поверхностью радужки и центральной частью передней капсулы хрусталика. Место, где роговица переходит в склеру, а радужка — в ресничное тело, называется углом передней камеры* В его наружной стенке находится дренажная (для водянистой влаги) система глаза, состоящая из трабекулярной сеточки, склерального венозного синуса (шлеммов канал) и коллекторных канальцев (выпускников). В углу передней камеры разрыхляющая ткань стромы радужки переплетается с роговичносклеральными пластинками и образует соединительно-тканный остов. Щели между трабекулами этого остова, заполненные жидкостью передней камеры, называются фонтановым пространством. С ним граничит шлеммов канал — круговой синус, расположенный в ткани прилежащей части склеры и сообщающийся с передними венами. Через угол передней камеры осуществляется основная часть оттока водянистой влаги. Через зрачок передняя камера свободно сообщается с. задней. В этом месте она имеет наибольшую глубину (2,75—3,5 мм), которая постепенно уменьшается по направлению к периферии. У новорожденных глубина передней камеры колеблется от 1,5 до 2 мм. Задняя камера — это узкое пространство, ограниченное спереди радужкой, которая является се передней стенкой и ограничена снаружи стекловидным телом. Внутреннюю стенку образует экватор хрусталика. Все пространство задней камеры пронизано связками ресничного пояска. Задняя камера через зрачок соединяется с передней камерой.
Обе камеры глаза в норме заполнены водянистой влагой, которая по своему составу напоминает диализат плазмы крови. Водянистая влага содержит питательные вещества, в частности глюкозу, аскорбиновую кислоту и кислород, потребляемые хрусталиком и роговицей, и уносит из глаза отработанные продукты обмена — молочную кислоту, углекислый газ, отшелушившиеся пигментные и другие клетки. Обе камеры глаза вмещают 1,223—1,32 см3 жидкости, что составляет 4 % всего содержимого глаза. Минутный объем камерной влаги равен в среднем 2 мм3, суточный — 2,9 см3. Иными словами, полный обмен камерной влаги происходит в течение 10 ч. Между протоком и оттоком внутриглазной жидкости существует равновесный баланс. Если по каким-либо причинам он нарушается, это приводит к изменению уровня внутриглазного давления. Разность давлений в полости глаза и венозном синусе склеры (около 20 мм рт. ст.), а также в указанном синусе и передних ресничных венах является основной движущей силой, обеспечивающей непрерывный ток жидкости из задней камеры в переднюю, а затем через угол передней камеры за пределы глаза.
Светопроводящей и светопреломляющей частью системы глаза является хрусталик. Это прозрачная, двояковыпуклая биологическая линза, обеспечивающая динамичность оптики глаза благодаря механизму аккомодации. В процессе эмбрионального развития хрусталик формируется на 3—4-й неделе жизни зародыша из эктодермы, покрывающей стенку глазного бокала. Эктодерма втягивается в полость глазного бокала, и из нее формируется зачаток хрусталика в виде пузырька. Из удлиняющихся эпителиальных клеток внутри пузырька образуются хрусталиковые волокна. Хрусталик имеет форму двояковыпуклой линзы. Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны. Передняя поверхность более плоская. Радиус ее кривизны (R = 10 мм) больше, чем радиус кривизны задней поверхности (R = 6 мм). Центры передней и задней поверхности хрусталика называют соответственно передним и задним полюсами, а соединяющую их линию — осью хрусталика, длина которой составляет 3,5–4,5 мм.
Линия перехода передней поверхности в заднюю — это экватор. Диаметр хрусталика — 9—10 мм.
Хрусталик покрыт тонкой бесструктурной прозрачной капсулой. Часть капсулы, выстилающая переднюю поверхность хрусталика, имеет название «передняя капсула» («передняя сумка») хрусталика. Ее толщина 11–18 мкм. Изнутри передняя капсула покрыта однослойным эпителием, а задняя его не имеет, она почти в два раза тоньше передней. Эпителий передней капсулы играет важную роль в метаболизме хрусталика, характеризуется высокой активностью окислительных ферментов по сравнению с центральным отделом линзы. Эпителиальные клетки активно размножаются. У экватора они удлиняются, формируя зону роста хрусталика. Вытягивающиеся клетки превращаются в хрусталиковые волокна. Молодые лентовидные клетки оттесняют старые волокна к центру. Этот процесс непрерывно протекает на протяжении всей жизни. Центрально расположенные волокна теряют ядра, обезвоживаются и сокращаются. Плотно наслаиваясь друг на друга, они формируют ядро хрусталика. Размер и плотность ядра с годами увеличиваются. Это не отражается на степени прозрачности хрусталика, однако вследствие снижения общей эластичности постепенно уменьшается объем аккомодации. К 40–45 годам жизни уже имеется достаточно плотное ядро. Механизм роста хрусталика обеспечивает стабильность его наружных размеров. Замкнутая капсула хрусталика не позволяет погибшим клеткам слущиваться наружу. Как и все эпителиальные образования, хрусталик в течение всей жизни растет, но размер его не увеличивается. Молодые волокна, постепенно образующиеся на периферии хрусталика, формируют вокруг ядра эластичное вещество — кору хрусталика. Волокна коры окружены специфическим веществом, имеющим одинаковый с ними коэффициент преломления света. Оно обеспечивает их подвижность при сокращении и расслаблении, когда хрусталик меняет форму и оптическую силу в процессе аккомодации.