Книги онлайн и без регистрации » Домашняя » От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов
[not-smartphone]

От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 157
Перейти на страницу:

От атомов к древу. Введение в современную науку о жизни

Пуриновые и пиримидиновые молекулы только что описанного типа называют азотистыми основаниями, потому что входящий в них азот проявляет основные свойства, подобно аммиаку (см. главу 1). Урацил, тимин, цитозин, аденин и гуанин — это азотистые основания. Урацил, тимин и цитозин — пиримидиновые азотистые основания, а аденин и гуанин — пуриновые. Вообще-то химикам известны десятки азотистых оснований, но для понимания основ биологии вполне хватит этих пяти. Другие азотистые основания встречаются в живых организмах реже, и значение их там гораздо меньше.

Завершая знакомство с азотистыми основаниями, совершенно необходимо добавить, что у них — да, и у них тоже! — есть одна особая разновидность изомерии. Состоит она в следующем. Входящая в состав азотистого основания гидроксильная группа (вместе с углеродом, к которому она присоединена, имеющая вид С–OH) может потерять водород и превратиться в кетогруппу (C=O). Система двойных связей в пиримидиновом или пуриновом ядре при этом перестраивается, а потерянный гидроксилом водород переходит на ближайший атом азота. В живых организмах азотистые основания всегда находятся не в спиртовой форме (с гидроксильными группами), а именно в кето-форме. Это распространяется на все важнейшие азотистые основания, кроме аденина, который выглядит всегда одинаково: у него гидроксильной группы просто нет.

По ту сторону рассвета

Пять азотистых оснований, с которыми мы познакомились, с биологической точки зрения — самые главные. Не секрет, что они используются земными живыми организмами для хранения и передачи генетической информации. Как именно это происходит, мы пока что “не знаем”, хотя уже довольно скоро узнаем (в главах 8 и 9). Но вот почему главными оказались именно эти пять оснований, а не какие-то другие родственные им? Ведь разных азотистых оснований, и пиримидиновых, и пуриновых, можно придумать очень много.

Ответ на этот вопрос надо, как всегда, искать в прошлом. И в данном случае это будет очень далекое прошлое. Сейчас точно известно, что химическая эволюция азотистых оснований началась задолго до возникновения жизни, а скорее всего, даже и до возникновения планеты Земля. Тут дело обстоит точно так же, как и с аминокислотами (см. главу 3). В большинстве углеродсодержащих (так называемых углистых) метеоритов при тщательном химическом анализе были найдены азотистые основания. В общей сложности их там не меньше десятка, и по структуре молекул они довольно разнообразны[51]. Очевидно, синтез этих веществ шел прямо на частицах протопланетного облака.

Например, если по-разному присоединять к пурину аминогруппы, то можно получить аденин (у него аминогруппа одна), а можно и основания с двумя аминогруппами — например, 2,6-диаминопурин или 6,8-диаминопурин (см. рис. 7.2Б). Главное же здесь вот что. Ни 2,6-диаминопурин, ни 6,8-диаминопурин не встречаются в земных живых организмах, а вот в углистых метеоритах они обнаруживаются легко. Причем их присутствие там никак нельзя объяснить биогенным загрязнением метеорита, уже упавшего на Землю, потому что на Земле этих соединений просто нет. Это — остатки добиологического разнообразия сложных молекул, которые синтезировались на ранних этапах эволюции Солнечной системы. Углистые метеориты, никогда не входившие в состав планет, служат “заповедниками” этого разнообразия — точно так же, как в случае с аминокислотами. Разных азотистых оснований там вполне могли быть десятки.

При возникновении жизни и аминокислоты, и азотистые основания подверглись процессу, подобному естественному отбору. Одни основания оказались удачными и вошли в состав живых систем, а другие — большинство — были отсеяны и в состав живых систем не вошли. В итоге начальное высокое химическое разнообразие исчезло. Остались несколько широко распространенных соединений, с которыми мы сейчас в основном и имеем дело. Причем они были выбраны отнюдь не случайно. Предполагается, например, что одним из критериев стала устойчивость оснований к ультрафиолетовому излучению Солнца, которое на древней Земле было очень серьезным фактором риска. Одна из научных работ, написанных на эту тему, прямо так и озаглавлена — “Выживание наиболее приспособленных до начала жизни”[52].

Нуклеозиды

Молекула, состоящая из остатков азотистого основания и сахара, называется нуклеозидом (см. рис. 7.3). Сахаром, входящим в нуклеозиды, по умолчанию является рибоза, но иногда — дезоксирибоза. Как мы помним, они отличаются друг от друга всего на один атом кислорода. Азотистое основание присоединяется к первому по счету углеродному атому сахара, который здесь принято обозначать единицей со штрихом (1'). От этого атома отщепляется гидроксил (–OH), а от одного из атомов азота, входящих в азотистое основание, одновременно отщепляется водород (–H). В результате выделяется вода, а между азотистым основанием и сахаром замыкается ковалентная связь. Так нуклеозид и получается.

Названия нуклеозидов являются производными от названий входящих в них азотистых оснований. Пять нуклеозидов, с которыми в основном имеют дело биологи, — уридин, тимидин, цитидин, аденозин и гуанозин. Если в качестве сахара в данный нуклеозид входит не рибоза, а дезоксирибоза, то к его названию прибавляется приставка “дезокси-”. Но иногда ее опускают, если по контексту и так понятно, о чем идет речь.

Теперь мы наконец знаем, почему атомы углерода в составе рибозы и дезоксирибозы обозначаются не просто цифрами, а цифрами со штрихами (см. главу 6). Дело как раз в том, что эти два сахара входят в состав нуклеозидов. А в любом нуклеозиде есть еще и азотистое основание, атомы которого имеют свою собственную нумерацию. Штрихи нужны, чтобы никто не спутал номера атомов сахара с номерами атомов азотистого основания.

От атомов к древу. Введение в современную науку о жизни

Нуклеозиды могут делать многое. Например, аденозин интересен тем, что является одним из нейротрансмиттеров, то есть веществ, передающих сигналы между нервными клетками. Именно на передачу этих сигналов действует кофеин — вещество, тоже относящееся к группе пуринов (см. рис. 7.4А). И сейчас у нас уже вполне достаточно знаний, чтобы разобраться, в чем тут дело.

Кофеин является блокатором аденозиновых рецепторов. Что это значит? К любому сигнальному веществу есть специальные рецепторы, то есть воспринимающие элементы. В данном случае это интегральные белки (см. главу 5), которые сидят в наружной мембране нервной клетки и узнают молекулы аденозина по принципу ключа и замка, то есть примерно так же, как ферменты узнают свой субстрат (см. главу 3). Что же касается кофеина, то его молекула похожа на молекулу аденина — ключевой составной части аденозина. Молекула кофеина связывается с тем же участком белка-рецептора, с которым должен связаться адениновый остаток аденозина, и застревает в нем, после чего никакой аденозин уже не может туда войти (см. рис. 7.4Б). По такому принципу действуют очень многие лекарства, яды и психоактивные вещества, в том числе и наркотики — они ведь обычно тоже связываются с рецепторами, предназначенными для нейротрансмиттеров, либо блокируя, либо активируя их.

1 ... 32 33 34 35 36 37 38 39 40 ... 157
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?