Книги онлайн и без регистрации » Домашняя » Интерстеллар: наука за кадром - Кип С. Торн

Интерстеллар: наука за кадром - Кип С. Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 75
Перейти на страницу:

Интерстеллар: наука за кадром

Рис. 15.4. Гравитационное линзирование звездного поля и Сатурна червоточиной для двух значений ширины линзирования: 0,014 (сверху) и 0,43 (снизу) радиуса червоточины (Модели выполнены командой Эжени фон Танзелманн с помощью программы Оливера Джеймса, основанной на моих уравнениях.)

Когда ширина линзирования очень мала, форма червоточины (см. сверху слева) такова, что виден резкий переход от внешней Вселенной (растянутые по горизонтали раструбы) к горловине червоточины (вертикальный цилиндр). Для камеры (см. сверху справа) червоточина искажает звездное поле и темное облако в левом верхнем углу лишь чуть-чуть и только вблизи края червоточины. Не считая этого, червоточина попросту заслоняет звездное поле от наблюдателя, как делает это любое непрозрачное тело со слабой гравитацией, например планета или звездолет. В нижней части рис. 15.4 ширина линзирования равна примерно половине радиуса червоточины, поэтому переход от горловины (вертикальный цилиндр) к внешней Вселенной (растянутые по горизонтали раструбы) стал более плавным.

При такой большой ширине линзирования червоточина сильно искажает звездное поле и темное облако (см. снизу справа) примерно таким же образом, как это делает невращающаяся черная дыра (рис. 8.3 и рис. 8.4), с образованием множественных изображений. Также линзирование увеличивает вторичное и третичное изображения Сатурна. На втором кадре червоточина выглядит больше, чем на первом, – она занимает больший угол обзора камеры. Это происходит не потому, что камера находится ближе к устью, – данное расстояние одинаково для обоих случаев. Причина видимого увеличения исключительно в гравитационном линзировании.

Червоточина в «Интерстеллар»

Когда Крис смог оценить варианты с различной длиной червоточины и шириной линзирования, его выбор был однозначен. Множественные изображения, видимые в червоточине при средней и большой длине, могли сбить с толку массового зрителя, поэтому Крис сделал червоточину в «Интерстеллар» очень короткой, длиной лишь в один процент от ее радиуса. И он выбрал умеренную ширину линзирования, около пяти процентов от радиуса, чтобы линзирование окружающего звездного поля было заметным и затейливым, но значительно меньшим, чем линзирование Гаргантюа.

Выбранная для фильма червоточина – верхняя из показанных на рис. 15.2. И после того как команда Double Negative создала для нее фон (туманности, пылевые облака, звезды), вид получился просто потрясающий (рис. 15.5). На мой взгляд, это одна из самых впечатляющих сцен в фильме.

Интерстеллар: наука за кадром

Рис. 15.5. Червоточина, как она показана в трейлере фильма. Перед червоточиной, ближе к центру, виден «Эндюранс». Фиолетовая окружность, которой я обвел червоточину, обозначает кольцо Эйнштейна, подобное кольцу на рис. 8.4 для невращающейся черной дыры. Первичные и вторичные изображения линзированных звезд здесь движутся таким же образом, как на рис. 8.4. Можете, посмотрев трейлер, проследить эти движения? (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Путешествие через червоточину

10 апреля 2014 года, когда уже шла послесъемочная обработка фильма, мне позвонил Крис. У него возникли сложности со сценой полета «Эндюранс» через червоточину, и ему срочно нужен был совет. Я приехал в «Синкопи», и Крис показал мне, в чем проблема.

Используя мои уравнения, Пол и его команда сгенерировали изображения полета через червоточину для различных значений ее длины и ширины линзирования. Для короткой червоточины с умеренным линзированием, фигурирующей в фильме, полет оказался слишком быстрым и неинтересным. В случае длинной червоточины полет напоминал путешествие по вытянутому тоннелю с проносящимися мимо стенами – а подобное уже не раз показывали в других фильмах. Крис показал мне много вариантов, с различными эффектами и добавками, и мне пришлось признать, что все они лишены притягательной оригинальности, к которой он стремился. Я вернулся домой и, размышляя, лег в постель, но и наутро решение не пришло мне в голову.

На следующий день Крис отправился в Лондон и продолжил искать решение вместе с Полом. В конце концов им пришлось отказаться от моих уравнений и, как выразился Пол, «выбрать гораздо более абстрактную интерпретацию внутренностей червоточины» – интерпретацию, которая хоть и отталкивалась от моделей, полученных на основе моих уравнений, но существенно отличалась от них.

Когда я увидел полет через червоточину на раннем просмотре фильма, мне понравилось. Хоть и без особой научной точности, но в целом сцена соответствовала духу настоящего полета через червоточину, а главное – выглядела самобытно и так, что дух захватывает. А какие впечатления остались у вас?

16. Обнаружение червоточины: гравитационные волны
Интерстеллар: наука за кадром

Как люди в «Интерстеллар» могли обнаружить червоточину? У меня как физика есть любимая версия, о которой я сейчас поведаю, выйдя за рамки непосредственных событий «Интерстеллар». Разумеется, эта лишь мои догадки, Кристофер Нолан тут ни при чем.

ЛИГО засекает всплеск гравитационных волн

В Кип-версии (позволю себе пофантазировать) за несколько десятилетий до начала событий фильма двадцатилетний Брэнд работал заместителем у директора проекта под названием ЛИГО (Laser Interferometer Gravitational-Wave Observatory – Лазерно-интерферометрическая гравитационноволновая обсерватория); см. рис. 16.1. Задачей ЛИГО было отслеживать в структуре пространства «рябь», которая доходит до Земли из отдаленных участков Вселенной. Эта рябь, которую называют гравитационными волнами, возникает, например, при столкновении черных дыр, или когда черная дыра разрывает на части нейтронную звезду, или в момент зарождения Вселенной, а также во многих других случаях.

Интерстеллар: наука за кадромИнтерстеллар: наука за кадром

Рис. 16.1. Сверху: аэрофотоснимок детектора гравитационных волн ЛИГО в Хэнфорде, Вашингтон. Снизу: центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами

Однажды, в 2019 году, в ЛИГО зарегистрировали самый сильный всплеск гравитационных волн за всю историю проекта (рис. 16.2). Волны колебались с амплитудой, которая несколько раз нарастала и спадала, а затем внезапно затихли. Этот всплеск длился лишь несколько секунд.

1 ... 32 33 34 35 36 37 38 39 40 ... 75
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?