Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк
Шрифт:
Интервал:
Закладка:
Открытие тёмной энергии резко повысило доверие к теории инфляции и по другой причине: мы уже не можем отрицать возможность существования нерассеиваемой субстанции как бессмысленной или противоречащей физике, поскольку тёмная энергия — именно такая субстанция! Эпоха инфляции, породившая наш Большой взрыв, закончилась 14 млрд лет назад, однако началась новая эпоха инфляции — под влиянием тёмной энергии. Теперь она протекает, как в рапиде: Вселенная удваивается в размерах не за долю секунды, а за 8 млрд лет. Так что нынешние содержательные дискуссии касаются не вопроса, была ли инфляция, а лишь того, имела ли она место один раз или дважды.
«Посев» первичных флуктуаций
Отличительный признак успешной научной теории: она даёт больше, чем в неё закладывается. Алан Гут показал, что за счёт одного-единственного предположения (о крошечной капле труднорассеиваемой субстанции) можно решить сразу три космологических парадокса: проблему взрыва, проблему горизонта и проблему плоской геометрии. Выше мы видели, как теория инфляция дала сверх заложенного в неё: она предсказала Ω = 1, что точно подтвердилось два десятилетия спустя. Но это не всё.
Предыдущую главу мы закончили вопросом, каковы истоки галактик и крупномасштабной структуры Вселенной. К всеобщему удивлению, теория инфляции ответила и на этот вопрос. И какой это был ответ! Впервые идею предложили два русских физика, Геннадий Чибисов и Вячеслав Муханов. Когда я впервые услышал о ней, я счёл её абсурдной. Сейчас я считаю её главным кандидатом на роль самого радикального и красивого синтеза идей в истории науки.
Если кратко, то первичные космические флуктуации появились благодаря квантовой механике — теории микромира (гл. 7, 8). Но ещё в колледже я узнал, что квантовые эффекты существенны лишь для очень малых объектов вроде атомов. Так какое отношение они могут иметь к самым крупным объектам из тех, которые мы изучаем, — к галактикам? Один из самых красивых аспектов теории инфляции состоит в том, что она связывает самые малые и самые большие масштабы: на ранних стадиях инфляции область пространства, которая ныне содержит Млечный Путь, была гораздо меньше атома, так что квантовые эффекты могли иметь существенное значение. И это было так: принцип неопределённости Гейзенберга в квантовой механике (гл. 7) не позволяет никакой субстанции, в том числе инфлирующей материи, быть совершенно однородной. Если вы попытаетесь сделать её однородной, квантовые эффекты вынудят её волноваться, и однородность будет нарушена. Когда инфляция растягивает субатомную область до размеров всей наблюдаемой Вселенной, флуктуации плотности, которые впечатала в неё квантовая механика, также растягиваются до размеров галактик и более. Обо всём остальном позаботилась гравитационная неустойчивость, усилившая флуктуации с ничтожного уровня 0,002 %, обеспеченного квантовыми флуктуациями, до величественных галактик, их скоплений и сверхскоплений, украшающих теперь ночное небо.
И главное здесь то, что всё можно точно подсчитать. Кривая спектра мощности (рис. 4.2) — это теоретическое предсказание одной из простейших инфляционных моделей, и я нахожу замечательным её согласие со всеми наблюдениями. Инфляционные модели также предсказывают три измеренных космологических параметра, приведённых в табл. 4.1. Я уже упоминал одно из этих предсказаний: Ω = 1. Два других касаются характерных особенностей кластеризации, которыми мы займёмся в последней главе. В простейших инфляционных моделях амплитуда первичных флуктуаций (обозначена в таблице буквой Q) зависит от того, насколько быстро инфлирующая область удваивается в размерах, и при времени удвоения около 10–38 секунды предсказание совпадает с наблюдаемым значением Q ≈ 0,002 %.
Теория инфляции также даёт интересные предсказания для параметра «наклона» первичной кластеризации (в таблице он обозначен n). Взгляните на зазубренную кривую на рис. 5.6, которую математики называют самоподобной, фрактальной или масштабно-инвариантной. Все эти термины, по сути, означают, что если вы замените изображение увеличенным фрагментом его же, то не найдёте различий. Поскольку повторять этот трюк можно сколько угодно, ясно, что и триллионная часть кривой должна выглядеть так же, как вся она в целом. Интересно, что, согласно предсказаниям теории инфляции, новорождённая Вселенная тоже почти наверняка была масштабно инвариантной в том смысле, что нельзя было обнаружить различий между случайно выбранным кубическим сантиметром и значительно увеличившимся его фрагментом. Почему? В эпоху инфляции увеличение Вселенной было, по сути, эквивалентом ожидания, пока всё вокруг ещё раз удвоится в размерах. Так что, совершив путешествие во времени в эпоху инфляции, вы увидели бы, что статистические свойства флуктуаций были масштабно инвариантными — то есть не изменялись во времени. Теория инфляции предсказывает, что это происходит по простой причине: локальные физические условия, порождаемые квантовыми флуктуациями, также мало изменяются во времени, поскольку инфлирующая субстанция не испытывает существенных изменений плотности или других параметров.
Параметр наклона n в табл. 4.1 характеризует близость инфляционной Вселенной к масштабной инвариантности. Он сопоставляет уровень кластеризации на больших и малых масштабах и определён так, что значение n = 1 соответствует идеальной масштабной инвариантности (одинаковая кластеризация во всех масштабах), n < 1 означает, что кластеризация сильнее в больших масштабах, а n > 1 — в малых масштабах. Муханов и другие первопроходцы теории инфляции предсказывали, что значение n должно быть очень близко к 1. Когда я с другом Тедом просиживал ночи с компьютером (гл. 4), мы занимались как раз получением самой точной в то время оценки параметра n. Наш результат был n = 1,15 ± 0,29, что подтверждало ещё одно предсказание теории инфляции.
Однако ситуация с параметром n оказалась ещё интереснее. Поскольку инфляция в конце концов прекратилась, инфлирующая субстанция должна была постепенно, пусть и очень медленно, разрежаться в ходе инфляции — в противном случае ничто не менялось бы, и инфляция продолжалась бы вечно. В простейших инфляционных моделях убывание плотности приводит к тому, что амплитуда порождаемых флуктуаций также убывает. Это значит, что флуктуации, возникающие позднее, должны иметь меньшую амплитуду. Но позднее возникшие флуктуации к моменту окончания инфляции не успевают сильно растянуться, и, значит, сейчас флуктуации в меньших масштабах должны быть меньшими. Эти рассуждения приводят к предсказанию n < 1. Для более конкретного прогноза необходима модель, описывающая, из чего состоит инфлирующая субстанция. Простейшая такая модель, впервые предложенная Андреем Линде и называемая на профессиональном языке «скалярным полем с квадратичным потенциалом» (это, по сути, гипотетический родственник магнитного поля), даёт предсказание n = 0,96. Теперь снова заглянем в табл. 4.1. Как видите, современные измерения n стали в 60 раз точнее, чем во времена «волшебной горошины». Согласно последним данным, n = 0,96 ± 0,005, что исключительно близко к предсказанному значению.
Рис. 5.6. Эта похожая на снежинку фигура, называемая кривой Коха в честь шведского математика Хельге фон Коха, обладает замечательным свойством: она совпадает с увеличенной частью самой себя. Теория инфляции предсказывает, что новорождённая Вселенная была подобным образом неотличима от увеличенного фрагмента самой себя, по крайней мере в приближённом статистическом смысле.