Книги онлайн и без регистрации » Домашняя » Суперобъекты. Звезды размером с город - Сергей Попов
[not-smartphone]

Суперобъекты. Звезды размером с город - Сергей Попов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 48
Перейти на страницу:

Массивные звезды живут меньше просто потому, что они светят ярче и быстрее пережигают свой запас водорода, хотя его и больше, но светимость очень резко растет с ростом массы из-за роста температуры и плотности в центре. Если звезда имеет массу порядка солнечной, то она живет где-то 10–12 миллиардов лет. Солнце находится в середине жизненного пути, и в конце такой объект не взрывается – наша звезда просто не может взорваться, нет никаких физических причин для этого. Солнце превратится в красного гиганта, внешняя оболочка будет сброшена и останется постепенно остывающее ядро без источников энергии – белый карлик.

Белый карлик – это конечная стадия эволюции не слишком массивных звезд. Если же звезда раз в десять тяжелее Солнца, то она превратится не в белого карлика. В конце ее жизни ядро потеряет устойчивость. Оно уже будет состоять в основном из железа и начнет схлопываться, но этот коллапс может остановиться. И тогда произойдет очень мощное выделение энергии. Звезда как бы упадет сама на себя, но не превратится сразу в черную дыру, а произойдет взрыв сверхновой. Это очень важное событие. Оно не только имеет огромное значение в жизни отдельной звезды, отмечая ее яркий финал, но и позволяет образовывать тяжелые элементы.

В природе некоторые элементы тяжелее железа могут образовываться в заметном количестве практически только при взрывах сверхновых (также массивные ядра элементов могут возникать при слияниях нейтронных звезд и при быстром истечении оболочек красных сверхгигантов). А сверхновые – это в основном результат коллапса ядер массивных звезд (есть еще взрывы сверхкритических белых карликов в двойных системах, но их оставим на потом). Если мы говорим о звезде с массой в 10, 20, может быть, в 30 раз больше солнечной, то после взрыва сверхновой останется нейтронная звезда – крайне интересный объект, очень компактный. Средняя плотность у нейтронной звезды чуть выше, чем у атомного ядра[3], а в центре, разумеется, еще больше. Неудивительно, что такой объект имеет очень интересные физические свойства. Если же звезда вначале была еще более массивной, то, скорее всего, она превращается в черную дыру. То есть все-таки коллапс не останавливается – все схлопывается, гравитация побеждает все остальные силы, и образуется черная дыра. Иногда это может произойти со взрывом, а иногда – нет. Таким образом, у разных звезд разные судьбы.

Звезды и элементы

Всем известно, что небо ночью темное. Однако объяснить это явление отнюдь непросто. Лишь в XVIII веке эта загадка стала очень активно обсуждаться учеными и была названа парадоксом Ольберса. Хотя, как полагается, Ольберс был не первым, кто обратил внимание на то, что небо ночью темное, и задумался над этим, связав этот факт с вопросом о бесконечной Вселенной, заполненной звездами[4]. Проблема в том, что, чтобы небо было темным, нужно чтобы звезды где-то заканчивались. Потому что если бесконечная Вселенная заполнена звездами, то в таком вечном мире мы бы своим взглядом везде упирались в поверхность звезды и все небо сияло бы как поверхность Солнца[5]. Мы видим, что это не так – значит, звезды где-то заканчиваются. И самое интересное то, что заканчиваются они не в пространстве, а во времени – Вселенная имеет конечный возраст.

Глядя на самые близкие звезды, мы видим их такими, какими они были несколько лет или несколько десятков лет назад. Большинство звезд на небе видны нам такими, какими они были сотни и тысячи лет назад. Далекие галактики мы видим такими, какими они были миллиарды лет назад. Но нет и не может быть на нашем небе источника, который бы мы видели таким, каким он был 14 миллиардов лет назад, потому что 14 миллиардов лет назад никаких из наблюдаемых нами источников не было. Может быть, наша Вселенная бесконечна, но свет от далеких звезд просто до нас еще не добрался, поэтому у нас темное небо над головой и поэтому возникает вопрос: какими же были самые-самые первые звезды?

Дело в том, что, когда Вселенная образовалась, в ней успели появиться только первые два элемента: водород и гелий (плюс были еще мелкие добавки лития, одного из изотопов водорода – дейтерия, но это несущественные для нашего разговора детали). Соответственно, первые звезды могли состоять только из водорода и гелия, и взрывы этих объектов как раз и давали начало рождению первых тяжелых элементов. Потом цепочка продолжалась: выброшенное вещество входило в состав нового поколения звезд и т. д. Последующие поколения звезд имели уже другой химический состав.

Первые звезды, состоявшие только из водорода и гелия, могли быть очень массивными. В тысячу раз тяжелее Солнца! Сейчас таких уже не делают. Они могли порождать первые черные дыры, которые были в десятки раз тяжелее тех, что сейчас возникают из звезд. А потом первые звездные черные дыры стали зародышами того, что сейчас мы наблюдаем как сверхмассивные черные дыры в центрах галактик. Большой вопрос связан с тем, могли ли самые первые звезды быть легкими (легче Солнца). Вначале считалось, что нет. Моделирование показывало, что в облаке газа с массой около 100 000 масс Солнца возникает 1–2 массивные звезды. Однако расчеты, проводимые в последнее время, опровергают эту точку зрения. Компьютерные симуляции показывают, что в некоторых случаях возникает по 5–6 звезд и некоторые из них оказываются настолько легкими, что время их жизни превышает современный возраст Вселенной.

Чтобы увидеть первые звезды, астрономы идут двумя путями. Во-первых, они пытаются строить все более мощные инструменты. По всей видимости, понадобятся новые аппараты за пределами земной атмосферы – космические телескопы следующего поколения, чтобы увидеть хотя бы взрывы самых первых звезд. Увидеть их где-то там, в прошлом, спустя всего лишь десятки миллионов лет после рождения Вселенной. Свет от них будет сильно покрасневшим из-за расширения Вселенной (она растягивается более чем в 10 раз за время распространения света от первых звезд, т. е. длина волны фотонов возрастает во столько же раз), поэтому аппараты должны наблюдать в длинноволновой области спектра, где земная атмосфера в основном непрозрачна. Большие надежды возлагают на космический телескоп имени Джемса Вебба (JWST). Его гигантское, по меркам орбитальных аппаратов, зеркало позволит увидеть то, что ранее оставалось скрытым от нас[6]. Однако, если в ранней Вселенной рождались не только очень тяжелые звезды, но и маленькие – с массой, скажем, около половины массы Солнца, то они могли дожить до наших дней. И тогда, например, где-то в нашей Галактике, даже в наших окрестностях, крутятся звезды с аномальным химическим составом – там только водород и гелий.

1 2 3 4 5 6 7 8 9 10 ... 48
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?