Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени - Джеймс Берк
Шрифт:
Интервал:
Закладка:
Винер сформулировал концепцию, которую назвал кибернетика (он греческого «управление») и использовал в работе, посвященной системам наведения зенитного огня. В соответствии с положениями кибернетической теории были созданы математические алгоритмы для обработки данных радаров. С их помощью на основании данных о траектории и движении цели можно было вычислить ее будущее местоположение в момент подлета снаряда.
Так, в 1944 году эта система Винера получила реализацию в приборе для управления зенитным огнем M-9. С самого начала он показал свою высокую эффективность в перехвате немецких ракет Фау-1 в районе Ла-Манша. В начале последнего месяца ракетных ударов зенитчики сбивали около двадцати четырех процентов выпущенных ракет. В день последнего налета из ста восьми ракет, поднявшихся в воздух, шестьдесят четыре было уничтожено с применением системы управления огнем.
В послевоенный период кибернетика стала основой вычислительной техники и автоматизации, а принцип обратной связи широко использовался в машиностроении. Одно из самых замечательных применений — инерциальная навигационная система с обратной связью. В состав такой системы входит гироскоп и акселерометр. С помощью гироскопа определяется направление движения самолета или ракеты, а акселерометр фиксирует все изменения скорости. Оба прибора работают в связке с электромоторами, которые возвращают приборы в изначальное положение с частотой тысячу раз в секунду. Необходимый для этого электрический заряд зависит от того, насколько велико отклонение приборов от изначальных значений. Используя эти данные в определенный момент времени, можно вычислить текущее положение объекта.
В результате этой истории, которая началась с лука, мы имеем современные высокоточные ракеты, которые благодаря обратной связи сами реагируют на препятствия в пространстве (например, на атмосферные явления или особенности рельефа) и безошибочно долетают до цели за сотни километров. Оборудованные инерциальными системами навигации ракеты поражают цель с точностью до метра, что наверняка оценил бы Робин Гуд.
Современная война высокотехнологична и ведется на расстоянии, и задолго до того, как в игру вступят живые люди, активно работает разведка и принимаются предупредительные контрмеры. Подобная тактика обязана своим существованием слишком частому повторению одного неприятного инцидента…
Современные технологии пронизывают всю нашу жизнь настолько, что мы их даже не замечаем. При описании информационных систем, беспрепятственно взаимодействующих друг с другом, принято говорить о «прозрачности». Конструкторы стремятся сделать свои инновационные разработки такими удобными в использовании, чтобы мы и не догадывались, что они рядом. Пищевая пленка — самый характерный пример. Она повсюду, она нам необходима, ею легко пользоваться, и она прозрачна (в буквальном смысле этого слова). Как частенько бывает с техническими открытиями везде и во все времена, появилась она случайно.
Пластик привлек всеобщее внимание в начале Второй мировой войны. В этот период немецкие бомбардировщики наносили ночные удары по Англии так часто, как заблагорассудится. Радиолокационные устройства раннего обнаружения были тогда весьма несовершенны, поэтому максимальное сопротивление, которое могли встретить немцы, — пара истребителей, спешно поднятых по тревоге. Обнаружение противника не отличалось скоростью и дальностью. К тому же радары, установленные на южном и восточном побережьях Англии, были длинноволновыми и им требовались большие антенны. А большая антенна — прекрасная мишень. Англичанам срочно требовался радар, который мог бы обходиться маленькой антенной, в противном случае война могла закончиться, едва начавшись.
Они не подозревали, что решение уже существовало и найдено оно было благодаря недоразумению, произошедшему 24 марта 1933 года в английской химической компании «Ай-си-ай». Дело в том, что химики использовали специальные стеклянные сосуды (которые они называли «бомбами») для изготовления красителей под большим давлением. Одна из «бомб» как-то взорвалась, и на горлышке образовался белый воскообразный налет. Впоследствии ситуация повторилась еще несколько раз. Наконец в 1935 году природа загадочного налета была определена. Он состоял из «полимерных» (от греческого «из многих частей») молекул и обладал водоотталкивающими и электроизолирующими свойствами. Материал назвали полиэтиленом и стали производить в виде пленки, технология изготовления которой по сути своей очень напоминает выдувание мыльных пузырей через проволочное колечко.
Полиэтилен начали делать еще до войны, но о том, что он может пригодиться для нужд противовоздушной обороны, никто не догадывался до тех пор, пока он не попал в руки ученых-атомщиков, которые искали хороший изолятор. Именно изолирующие свойства полиэтилена помогли британцам добиться существенных военных успехов благодаря новому высокочастотному радару. Такой радар обладал более высоким разрешением, цель возвращала более точный сигнал, к тому же новые радарные установки были довольно компактны и могли устанавливаться на корабли и самолеты. В 1943 году английские ночные истребители, оснащенные новыми радарами, уже вовсю сбивали немецкие бомбардировщики, а корабли обнаруживали суда противника в ночном море. Подводный флот Третьего рейха стал нести большие потери, и исход битвы за Атлантику был предрешен.
Один из наиболее распространенных способов изготовления полиэтилена, как уже говорилось, напоминает выдувание пузырей. Пузыри получаются потому, что большие молекулы полиэтилена образуют длинные устойчивые и прочные цепочки. По этой причине в определенном состоянии он и ведет себя, как мыло, которое тоже может образовывать довольно устойчивую пленку. Ученый XIX века Джеймс Дьюар однажды поставил рекорд — его мыльный пузырь продержался три года.
Пластмасса и мыло ведут себя одинаково, поскольку оба эти вещества являются коллоидными — они легко проникают сквозь мембраны. В случае с мылом молекулы объединяются в большие группы, называемые мицеллами, — именно поэтому мыло обладает моющими свойствами. Молекулы мыла облепляют частицу грязи или жира и образуют мицеллу, делая частичку гидрофильной, она отрывается от ткани или кожи, приобретает сферическую форму и молекулы мыла не дают ей попасть обратно. Таким образом ткань становится чистой.
Немногим удается стать национальным героем, купаться в лучах славы и войти в высшее общество благодаря мылу, но Мишелю Эжену Шеврёлю повезло. Свой карьерный путь он начал будучи молодым химиком, живущим в Париже. Именно он и раскрыл механизм действия мыла. В 1811 году он изучал красители и источники их получения — растительные масла и смолы — и заинтересовался жирами, а следующим шагом пришел к открытию жирных кислот. В 1823 году он опубликовал свою главную работу, в которой утверждал, что мыло состоит только из жирных кислот и щелочи. Шеврёль привел список жирных кислот, которые подходят для сапонификации, и превратил производство мыла в целую науку. Поскольку жирные кислоты также могли использоваться и для производства свечей, он преуспел и в этой области. Отныне мир стал светлым, чистым и ароматным, а Шеврёль быстро заработал себе почет и славу. Когда, дожив до ста двух лет, он скончался, во Франции был объявлен национальный траур.