Книги онлайн и без регистрации » Историческая проза » Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - Геннадий Горелик

Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - Геннадий Горелик

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 27 28 29 30 31 32 ... 77
Перейти на страницу:

Максвелл также начинал с обыденного смысла этого слова. Он искал закон взаимосвязи электрических и магнитных свойств в каждой точке «поля действия электромагнетизма» — искал закон, переходящий в частных случаях в известные законы Кулона, Ампера, Фарадея. Максвелл не знал, что не хватает еще одного закона, который ему предстоит открыть.

Свойств в каждой точке четыре: электрическая и магнитная силы, заряд и ток. Столько же должно было быть и взаимосвязей, или, на математическом языке, уравнений. Тот, кто видел четыре лаконичных уравнения Максвелла в нынешних учебниках:

Кто изобрел современную физику? От маятника Галилея до квантовой гравитации

очень удивится, заглянув в статьи Максвелла 1855, 1861 и 1865 годов, в которых тот прошел путь к своим уравнениям. В каждой статье более полусотни страниц. И удивительное различие материала. В первой статье механизм поведения силовых линий представлен движением невесомой и несжимаемой жидкости. Во второй — появляются в огромном количестве некие «молекулярные вихри» и две «эфирные среды», в которых происходят электромагнитные и световые явления. В третьей статье уже никаких вихрей, два эфира совпадают, а свет назван электромагнитным явлением.

Непоследовательность? Максвелл объяснил свой метод исследования в самом начале поиска — в статье 1855 года. Выбрав отправной точкой идеи Фарадея, Максвелл сравнил два метода — «чисто математическое формулирование или физическая гипотеза»: в первом случае теряется физическая природа явления, во втором явление рассматривается через узкий окуляр избранной гипотезы. И Максвелл избрал третий путь — «офизичить» математическое описание с помощью подходящих физических аналогий, делая математический язык более наглядным, но не привязывая себя к этим аналогиям намертво и сохраняя свободу в поиске адекватного описания. Речь шла об иллюстрациях, помогающих воображению без претензий на раскрытие сути явления. Такой метод позволял переходить с одного уровня описания на другой без необходимости объяснять все причины перехода. Ведь кроме объективно-уважительных причин действуют субъективно-интуитивные, которые и самому исследователю не всегда понятны.

По словам Эйнштейна, понятия так же нельзя вывести из опыта чисто логически, как «невозможно построить дом без использования лесов, которые сами вовсе не являются частями здания».

Такими лесами у Максвелла были потоки несжимаемой жидкости, силовые линии, молекулярные вихри, две эфирные среды. Построив здание теории электромагнитного поля, или электродинамики, леса он удалил. Почти все. Осталась единая эфирная среда, еще несколько десятилетий помогая воображению физиков, хоть в уравнениях Максвелла никакие ее свойства не участвовали.

Эфир можно сравнить с ненаблюдаемым Чеширским котом, у которого кроме видимой улыбки есть еще и слышимый голос. Наблюдатель может искать взаимосвязь между шириной улыбки и характером звуков — от нежного «муррр» до недовольного шипения. Такая взаимосвязь не нуждалась бы в наличии самого кота, хотя в поиске закономерности пушистый образ мог бы и пригодиться.

Подобные сравнения строгий читатель сочтет неуместными, поскольку речь идет об одном из величайших достижений в истории физики.

Не до шуток, вероятно, и тому читателю, кто настороженно ждет, не связано ли это достижение с чем-нибудь библейским. Спешу успокоить: никаких свидетельств такого рода Максвелл не оставил. И предлагаю читателям самим решить, можно ли подобным свидетельством посчитать отношение к уравнениям Максвелла его младшего современника и сподвижника в статистической физике Больцмана, который свои чувства по поводу уравнений Максвелла выражал строками «Фауста»:

Не Бог ли эти знаки начертал?
Таинственен их скрытый дар!
Они природы силы раскрывают
И сердце нам блаженством наполняют.

Атеист Больцман, похоже, мог поблагодарить Всевышнего за помощь Максвеллу в изобретении понятия поля и в открытии с помощью этого понятия системы законов электромагнетизма.

Не менее сильные чувства испытывали фундаментальные физики следующего поколения.

Макс Планк причислил успех Максвелла к «величайшим триумфам человеческого стремления к познанию», к «наиболее удивительным свершениям человеческого духа» и к проявлениям того, «что между законами природы и законами духа имеются какие-то очень тесные связи».

Эйнштейн подытожил проще, но не менее сильно: «Одна научная эпоха закончилась и другая началась».

В эпоху Максвелла и при его прямом участии произошло объединение физики, до того состоявшей из весьма автономных частей: механика, теплота и оптика. Статистическое объяснение теплоты объединило ее с механикой, а оптика оказалась проявлением электромагнитных сил. Но подлинно эпохальную роль Максвелл сыграл в том, что фундамент физики был впервые капитально перестроен. Величественное здание, заложенное Галилеем и возведенное Ньютоном, вместило новую физику молекулярно-тепловых явлений, но оказалось тесным, чтобы вместить — без перестройки — физику электромагнетизма.

Глобальное электромагнитное объединение

Из достижений Максвелла физиков более всего поразило раскрытие электромагнитной природы света — древнейшего, важнейшего и общедоступного физического явления, ничем не напоминавшего электричество и магнетизм.

Первый намек увидел Фарадей, обнаружив в 1845 году, что магнитное поле влияет на свет. К тому времени уже было известно, что свет — это волны, то есть распространение колебаний, и что колебания эти поперечны: происходят поперек направления распространения. Считалось, что колеблется «светоносный эфир» — незаметная среда, похожая, однако, на твердые тела, в которых лишь и бывают поперечные колебания, а в газах и жидкостях возможны лишь продольные, как, например, звук. Из естественного света можно выделить часть, в которой колебания происходят лишь в одном направлении, — поляризованный свет. Наблюдая распространение такого света в магнитном поле, Фарадей обнаружил, что направление поляризации поворачивается, и заподозрил влияние магнитного поле на светоносный эфир.

Лишь когда Максвелл получил систему уравнений электромагнитного поля, он обнаружил, что одно из решений этих уравнений — распространение поперечных колебаний, притом со скоростью, всего на один процент отличающейся от скорости света. Максвеллу понадобилось еще несколько лет, чтобы прийти к выводу, что величина скорости, полученная из электромагнитных измерений, и величина, полученная в опытах со светом, — это два разных способа измерения одного и того же. И что свет — это частный случай электромагнитных колебаний, когда за одну секунду происходит миллион миллиардов колебаний.

Электромагнитное объяснение света было очень впечатляющим, но говорило об уже известном явлении. А предсказание электромагнитных волн самой разной частоты открывало совершенно новую область физических явлений и, главное, дало возможность проверить саму теорию, которую скептически встретили не только в Германии и Франции, где царила теория дальнодействия. Ее не принял и Уильям Томсон, самый знаменитый тогда в Британии физик, притом расположенный к Максвеллу. Одобрив промежуточную теорию Максвелла, основанную на молекулярных вихрях, Томсон в штыки встретил то, что Максвелл убрал эти вихревые леса, оставив свои уравнения без объяснения.

1 ... 24 25 26 27 28 29 30 31 32 ... 77
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?