Книги онлайн и без регистрации » Разная литература » Предчувствия и свершения. Книга 3. Единство - Ирина Львовна Радунская

Предчувствия и свершения. Книга 3. Единство - Ирина Львовна Радунская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 84
Перейти на страницу:
исходной высоты. Причина ясна: трение о воздух, затрата энергии на возбуждение звуковых волн внутри шарика и плиты, а также в воздухе. Но Галилей научил нас, обдумывая опыты, отделять главное от второстепенного. Второстепенное здесь — потеря энергии. Главное — обратимость механических движений, выражающаяся в том, что время входит в уравнения механики обратимо. Изучая механику, можно изменять знак, стоящий в уравнениях перед временем.

Рассматривая процесс в целом, необходимо определить, когда отброшенные «мелочи» станут существенными, а математическая модель (уравнения) должна быть уточнена. Уточнение покажет, когда обращение времени становится не соответствующим реальности. Ответ прост. Нельзя аналогично толковать опыт с шариком в тех случаях, когда потери механической энергии слишком велики и каждый последующий подскок шарика много меньше предыдущего. В этом случае требуется учет трения, приводящего к выделению тепла, а значит, для описания опыта потребуется привлечение термодинамики.

Совершенно так же обстоит дело в оптике. Оказывается, что в оптике существуют явления, развивающиеся так, будто в течение коротких интервалов времени направление событий во времени может быть изменено на обратное.

Симметрия уравнений оптики (так же, как уравнений механики) такова, что обращение времени может быть заменено обращением направлений, то есть заменой реальных движении движениями, направленными противоположно.

В оптике для этого следует заменить направление распространения световых волн (вперед и назад, от центра к центру). Такую замену называют обращением волнового фронта, а если такое обращение возникает как следствие самовоздействия, например при вынужденном рассеянии, его называют самообращением волнового фронта. Теперь эффект самообращения может быть получен при различных вынужденных рассеяниях. Установлено, что эффект самообращения очень близок к тому, что происходит при голографии и в некоторых других случаях.

При вынужденном рассеянии Мандельштама — Бриллюэна удается добиться практически полного обращения волнового фронта. Вот несколько примеров того, что может быть при этом достигнуто.

Известно, что получение в твердотельных лазерах столь узких пучков излучения, как в лучших газовых лазерах, связано с огромными трудностями и большими затратами. Причина в сложности изготовления достаточно однородных лазерных кристаллов. Существенно, что количество и степень неоднородности возрастают при увеличении размеров кристалла. Поэтому попытки использовать большой лазерный усилитель для усиления излучения, получаемого от хорошего маломощного лазера, не приводят к успеху — неоднородности усилителя портят качество усиливаемого излучения. Попытки применить еще один усилитель или вторично применить первый лазерный усилитель приведут лишь к дополнительному ухудшению качества излучения.

Но если излучение, искаженное лазерным усилителем, подвергнуть обращению волнового фронта, оно вторично пройдет тот же лазерный усилитель в обратном направлении, причем все искажения, возникшие при первом проходе окажутся скомпенсированы при обратном проходе. С ним произойдет то же, что с девушкой на кинопленке. Двукратное прохождение в прямом и обратном направлении приведет все в исходное состояние. В случае с лазерным усилителем обращение волнового фронта и двукратное прохождение через усилитель приведет к увеличению интенсивности излучения без внесения в него искажений. Так, в рубиновом лазере плохого качества удалось полностью сохранить однородность усиливаемого излучения при увеличении его интенсивности в 400 раз. Это достигается потому, что каждый из участков световой волны, прошедший определенный путь внутри лазера-усилителя, проходит в обратном направлении в точности тот же путь. При этом все искажения, приобретаемые по пути вперед, выправляются во время пути обратно. Волна, прошедшая усилитель дважды в противоположных направлениях, отличается от волны, входящей в усилитель, только тем, что она усилена и идет в противоположном направлении.

При этом существенно, что скорость света так велика, что за время его двойного прохождения состояние усилителя практически неизменно. (Вспомним, что обращение времени может быть заменено обращением направлений, только если в условиях опыта не происходят изменения оптических свойств среды.)

Вслед за Н. Г. Басовым и его сотрудниками лазерные усилители с обращением волнового фронта на вынужденном рассеянии успешно применяют для лазерного нагрева малых мишеней при термоядерных и других исследованиях. Аналогичным способом возможно самонаведение излучения лазеров через неоднородные среды, например через атмосферу, или при применении дешевых оптических деталей сравнительно низкого качества. Этой возможностью предполагают воспользоваться создатели наземного лазерного оружия, предназначенного для поражения целей в космосе в ходе звездных войн.

Нелинейная оптика, ведущая свою родословную от Вавилова, нашла пути преобразования длины волны (цвета) лазерного излучения. Стало возможным создавать приборы, порождающие из невидимого инфракрасного излучения яркий зеленый свет или любой другой из цветов, входящих в спектр излучения Солнца и даже в невидимое ультрафиолетовое и в мягкое рентгеновское излучение.

Нелинейная оптика позволила разработать сверхчувствительные приемники света, аналогичные лучшим радиоприемникам, и реализовать стабильность частоты источников света, превосходящую стабильность лучших атомных часов.

Однако это выходит за пределы, очерченные рамками главы, охватывающей лишь то, что связано с рассеянием света. Об этом будет рассказано в другом месте.

ГЛАВА 3

ОБГОНЯЯ СВЕТ

Нужны исключительные обстоятельства, чтобы имя ученого попало из науки в историю человечества.

О. Бальзак

Увидеть невидимое!

В абсолютной темноте работали дни за днями молодые энтузиасты, изучавшие в начале тридцатых годов природу света.

Изучать свет в темноте! Что может быть нелепее этого! Но тем не менее в здании Академии наук на набережной Невы ученые ежедневно входили в совершенно затемненные комнаты и подолгу сидели в них, обдумывая предстоящие опыты. Да, они сидели в абсолютной темноте и ничего не делали.

Готовились. Подготавливали свои глаза. Лишь через час ощупью подходили к заранее отрегулированным приборам и приступали к работе.

Опыт начинался. Они смотрели и видели то, что совершенно невидимо для остальных людей. Видели свечение столь слабое, что его не мог воспринять ни один из приборов, существовавших в то время.

Это были сотрудники и ученики Сергея Ивановича Вавилова, доказавшего, что человеческий глаз после часового пребывания в темноте способен видеть мельчайшие порции света, измеряемые всего десятками световых квантов-фотонов.

Советские оптики настойчиво изучали люминесценцию — странную способность некоторых веществ самопроизвольно излучать слабый таинственный свет.

Такое самосвечение наблюдают не только ученые. Помните светлячков, то вспыхивающих, то исчезающих в ночной листве? А тому, кто бывал летней ночью на южном море, не забыть серебристой вуали, окутывающей тело пловца, подводную часть лодки, превращающей в фейерверк взбитые веслом каскады брызг.

Светящиеся в темноте стрелки и цифры часов, авиационных приборов… Портреты и пейзажи, писанные светящимися красками… Почему все это светится? Какая невидимая рука поджигает вещество изнутри?

Эту-то загадку и разгадывал Вавилов и его ученики.

…Молодые люди, впервые приходящие сегодня на лекции академика Павла Алексеевича Черенкова, обычно не знают, что курс экспериментальной физики им будет читать ученый, открывший эффект Черенкова. Ведь для молодежи эффект

1 ... 23 24 25 26 27 28 29 30 31 ... 84
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?