Мир многих миров. Физики в поисках иных вселенных - Алекс Виленкин
Шрифт:
Интервал:
Закладка:
Рис. 9.1. В сферической вселенной сумма углов треугольника превышает 180 градусов. На этом рисунке треугольник имеет 3 прямых угла, что в сумме дает 270 градусов.
Другим триумфом инфляции было объяснение небольших возмущений плотности, едва заметной ряби, которая позднее превратилась в галактики. Теория инфляции дала четкое предсказание: величина возмущений должна быть примерно одинаковой на всех астрофизических масштабах длины — от характерных межзвездных расстояний (в несколько световых лет) и вплоть до размеров всей видимой Вселенной. К началу 1990-x наблюдатели были готовы проверить это предсказание.
Как уже говорилось в главе 4, первичная рябь оставляет отпечаток в фоновом космическом излучении. Это послесвечение Большого взрыва было испущено 13 миллиардов лет назад и сейчас приходит к нам со всех направлений на небе. С самого открытия этого излучения в середине 1960-х годов космологи догадывались, что в нем скрыт образ ранней Вселенной. Однако первичные неоднородности были столь малы — всего одна стотысячная от средней интенсивности, — что долгие годы оставались за пределами точности измерений, и наблюдался лишь идеально однородный фон. Прорыв случился в 1992 году, когда был запущен спутник СОВЕ (Cosmic Background Explorer, "исследователь космического фона"). Он построил полную карту неба, измерив излучение, приходящее со всех направлений, и впервые смог различить едва заметные вариации его интенсивности.
Карта СОВЕ напоминает расфокусированную фотографию: на ней видны только крупные особенности космического огненного шара, а более тонкие детали, меньше примерно 7 градусов на небе, совершенно размыты. (Для сравнения: Луна видна под углом полградуса.) За СОВЕ последовала серия других экспериментов все возрастающей точности. Последним из них стала другая спутниковая миссия WMAP. На изображении огненного шара, полученном WMAP (рис. 4.2), различимы детали размером в 1/5 градуса, то есть оно в 30 раз более резкое, чем первоначальная карта СОВЕ.
По мере сбора данных постепенно, шаг за шагом, проступала картина первичной ряби. И, что поразительно, она оказывалась в полном согласии с предсказаниями теории инфляции! Эти свидетельства ранней горячей эпохи оставались на небе миллиарды лет, дожидаясь, пока их откроют и расшифруют. И вот теперь небеса наконец заговорили.
В ближайшие годы инфляции предстоит пройти через серию новых наблюдательных проверок. Физическая теория может подтверждаться экспериментом, но никогда не может быть доказана. С другой стороны, одного твердо установленного факта достаточно, чтобы ее опровергнуть. Например, инфляция предсказывает, что плотность должна быть равна критической с точностью 1 к 100 000. Так что, если будущий эксперимент обнаружит более значительное отклонение, инфляция окажется в трудном положении.[54]
Новое поколение миссий по исследованию микроволнового фона включает спутник "Планк"[55], который еще более повысит разрешение изображения, а также наземную обсерваторию QUIET, которая будет с высокой точностью измерять ориентацию электрического поля (поляризацию) микроволн. Поляризационный узор чувствителен к наличию гравитационных волн — крошечных вибраций геометрии пространства-времени. Этот эффект может служить для проверки еще одного предсказания инфляционной теории: мы должны быть погружены в гравитационно-волновое море с очень широким спектром длин волн — от размеров меньше Солнечной системы и до самых больших наблюдаемых масштабов.[56] Амплитуда этих волн определяется энергией ложного вакуума — движущей силы инфляции. Чем выше энергия, тем больше волны. Так что, если QUIET зарегистрирует гравитационные колебания, мы получим возможность определить энергию ложного вакуума, вызывающего инфляционное расширение.[57] Это стало бы важным шагом к пониманию инфляции и ее связи с физикой микромира.
По мере поступления новых данных мои мысли все чаще обращались к заброшенной идее вечной инфляции. Главным аргументом против нее было то, что она рассматривает Вселенную за нашим горизонтом, которая недоступна для наблюдения. Но если теория инфляции поддерживается данными в наблюдаемой части Вселенной, не следует ли нам доверять и ее заключениям о регионах, которые мы не можем наблюдать?
Если я брошу камень в черную дыру, то, используя теорию относительности, смогу описать, как он падает к ее центру и как разрушается и испаряется под действием колоссальных гравитационных сил. Все это невозможно наблюдать снаружи, поскольку ни свет, ни какой-либо другой сигнал не может вырваться изнутри черной дыры. И все же лишь немногие поставят под вопрос точность моего описания. У нас есть все основания полагать, что теория относительности действует внутри черных дыр точно так же, как и снаружи. То же самое можно теперь сказать и про теорию инфляции. Надо попробовать извлечь из нее все, что она может рассказать о величественном устройстве Вселенной, ее происхождении и конечной судьбе.
Я бы и в ореховой скорлупе считал себя властелином необъятного пространства.
Вопрос, заставивший меня думать о вечной инфляции, больше напоминает научную фантастику, чем физику. Он касался будущего разумной жизни во Вселенной. Отдаленные перспективы любой появившейся цивилизации выглядят довольно мрачными. Даже если она избежит природных катастроф и самоуничтожения, она в конце концов лишится энергии. Звезды рано или поздно умирают, и все остальные источники энергии тоже исчерпываются. Но теперь вечная инфляция, похоже, дает некоторую надежду.