Чудесная жизнь клеток. Как мы живем и почему мы умираем - Льюис Уолперт
Шрифт:
Интервал:
Закладка:
Большой вклад в понимание закономерностей развития нашего организма внесло изучение лягушек и цыплят. Ведь в большинстве живых существ задействованы одинаковые или очень похожие механизмы. Эволюция раз за разом без стеснения идет одним и тем же путем, что, однако, не мешает создавать видовое разнообразие.
Для того чтобы проиллюстрировать действие механизма, отвечающего за создание структуры тела, и понять принципы его работы, мы прибегнем к аналогии с французским флагом, который состоит из трех одинаковой величины полос синего, белого и красного цветов, расположенных на одной оси. Сам флаг может быть любого размера, однако схема его раскраски всегда остается неизменной. Если мы имеем популяцию клеток, которые способны раскраситься в синий, красный и белый цвета, и при этом знаем, что число клеток в популяции может меняться, то какой же механизм с гарантией расположит их в виде французского флага? Представьте, что вы стоите вместе с другими людьми и у каждого из вас имеется по куску бумаги синего, белого или красного цвета. Вы ждете известного французского деятеля и хотите приветствовать его французским флагом — для этого люди с листами разных цветов должны выстроиться в строгой последовательности. Это реально только в том случае, если вы будете твердо знать свое место в общем ряду, которое, разумеется, будет соответствовать цвету листа бумаги у вас в руках. Без постоянного обмена сигналами между участниками мероприятия добиться успеха вам не удастся.
Точно так же выстраиваются в необходимом порядке и клетки эмбриона. Клетки получают соответствующую информацию и, согласно ей, занимают позицию в ряду других клеток, ориентируясь на границы этого ряда. После обретения клетками своих мест в них включаются генетические программы: клетки из левой трети становятся синими, из центральной трети — белыми, а из правой трети — красными. Смысл этого механизма в том, что на основе использования одного и того же позиционного значения могут развиться различные формы клеток — это происходит благодаря тому, что, в соответствии с заложенной в них генетической программой, клетки способны интерпретировать свое позиционное значение различным образом. Этот же механизм с успехом действует и в двухмерной системе координат, в которой интерпретирование позиционного значения происходит по двум осям. Далее мы рассмотрим подобные примеры.
Как клетки определяют свою позицию по отношению к начальной и конечной границам группы клеток, к которой они принадлежат? Это непростая проблема. Поскольку все схемы последующего развития клеток изначально формируются внутри небольших клеточных групп, протяженность линии клеток по прямой в любом направлении составляет меньше тридцати клеток. Это заставило Френсиса Крика предположить, что клетки определяют свою позицию благодаря считыванию информации о концентрации того или иного химического соединения. Однако как бы привлекательно ни выглядела эта теория, в настоящее время считается, что распространение сигнала в виде определенной концентрации химического вещества слишком ненадежный способ для получения столь важной информации. Ученые продолжают спорить о том, каким именно образом клетки обретают свои позиционные значения. Возможно, это происходит за счет непосредственного обмена сигналами между клетками в местах их соединения друг с другом.
Как бы то ни было, исследования регенерации тканей дают убедительные доказательства того, что клетки действительно обладают позиционными значениями. Несколько видов лягушек способны регенерировать свои конечности, что требует, чтобы клетки обладали позиционными значениями относительно утраченной конечности, то есть чтобы процесс регенерации начинался с того места, в котором конечность подверглась ампутации, и далее по направлению к кончикам утраченных пальцев.
Ученые выявили специфический белок на оболочках клеток конечности лягушки, концентрация которого уменьшается от плеча к конечностям лягушки. И при этом установили, что возможно изменить позиционные значения клеток, обрабатывая регенерируемую конечность ретиноевой кислотой, которая приводит к появлению у клеток в районе пальцев более высокой концентрации этого белка и уподобляет их клеткам в районе плеча. Если ампутировать лягушке кисть, то при обычных условиях у нее будет регенерирована именно кисть. Но если в процессе регенерации ввести в ткани ретиноевую кислоту, то регенерируемые клетки решат, что они являются клетками плечевой области, и тогда на месте отрезанной кисти вырастет целая лапка.
Другой пример того, что клетки обладают позиционными значениями, дало изучение тканей дрозофилы. В ходе экспериментов ученые установили, что позиционные значения клеток ног и усиков дрозофилы одинаковы, но по-разному интерпретируются из-за воздействия особых контролирующих генов. И ноги, и усики дрозофилы являются довольно длинными образованиями, но при этом ноги вырастают из тела мушки, а усики — из ее головы и весьма сильно отличаются друг от друга по форме. Однако мутация одного-единственного гена может привести к тому, что у дрозофилы вместо усика вырастет нога.
Ученым еще предстоит понять, как действуют контрольные гены, которые следят за интерпретацией клетками своих позиционных значений. Но как бы то ни было, поразительно, что один-единственный ген может иметь столь мощное значение для формирования эмбриона.
Важность контрольных зон генов в деле образования структур тела подтверждается другим примером, почерпнутым из изучения особенностей развития дрозофилы. На ранней стадии развития некоторые гены проявляются в спинной области мушки семью полосками — их можно увидеть, если промаркировать белок, который они кодируют. Изначально исследователи думали, что эти полоски наделяет особыми свойствами и точно устанавливает их очертания и границы лежащая под ними волнообразная структура — что полоски развиваются в районе гребней каждой из волн. Но на самом деле механизм установления очертания и границ полосок основан на других принципах, в число которых, однако, не входит принцип позиционной информации. Дело в том, что каждая полоска отличается от всех остальных. Это происходит из-за того, что имеется семь различных контрольных зон, в результате чего образуется семь разных полосок. Каждая из контрольных зон активируется разными белками, которые играют роль транскрипционных факторов, присутствующих в области каждой полоски.
Формирование структур тела во время развития эмбриона хорошо наблюдать на примере образования конечностей. Особенно полезными в этом плане оказались исследования эмбриона цыпленка, поскольку за развитием его конечностей очень легко вести наблюдение — для этого достаточно вскрыть скорлупу яйца и увидеть эмбрион во всех деталях.
Конечности начинают расти, когда само тело уже достаточно хорошо сформировано. Их зачаток на раннем этапе развития похож на сплюснутый воздушный шарик. При этом одни клетки создают его «оболочку», внутри которой делятся другие клетки; это деление и ведет к росту «шара». Впоследствии внутренние клетки образуют зародышевые элементы костной системы — предтечи костей. На верхушке оболочки «шара» находится утолщенный гребень; он и придает лапке цыпленка ее окончательную форму.
То же самое происходит с конечностями человека. На краю зоны развития в том месте, где будет сформирован мизинец, находится особая сигнальная зона, в которой образуется белок «Акустический еж». Он передает информацию по линии, которая пролегает от большого пальца к мизинцу. Концентрация «Акустического ежа» наивысшая в районе формирования мизинца, она снижается ближе к зоне, где образуется большой палец. Ученые полагают, что степень концентрации «Акустического ежа» определяет позицию клеток, а значит, и то, какой именно палец здесь сформируется.