Книги онлайн и без регистрации » Домашняя » Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - Станислас Деан
[not-smartphone]

Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - Станислас Деан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 101
Перейти на страницу:

Пластичность мозга капризна. Иногда она действительно позволяет преодолеть огромные трудности. А иногда дети и взрослые – умные и в высшей степени мотивированные – сохраняют мучительные нарушения на всю жизнь. Зависит ли это от конкретных нейронных сетей? Снижается ли пластичность с возрастом? Можно ли ее восстановить? Какие законы ею управляют? Чем обусловлена поразительная эффективность мозга с рождения и на протяжении всего детства? Какие алгоритмы позволяют нашим нейронным сетям формировать представления о мире? Поможет ли понимание принципов их действия учиться быстрее и лучше? Могут ли они вдохновить нас на создание более «умных» машин, искусственного интеллекта, который будет имитировать работу человеческого мозга или даже превзойдет его? На эти и другие вопросы я попытаюсь дать ответ в данной книге. В ее основу положен междисциплинарный подход: во всех наших рассуждениях мы прежде всего будем опираться на последние научные открытия в самых разных областях знаний: в когнитивистике, нейробиологии, в сфере искусственного интеллекта и педагогики.

Зачем учиться?

Почему мы вообще должны учиться? Сам факт того, что мы наделены способностью получать знания, вызывает вопросы. Разве не было бы лучше, если бы дети могли говорить и думать с самого первого дня, подобно Афине, которая, согласно легенде, появилась на свет из головы Зевса уже взрослой, в полном вооружении и, едва «роды» закончились, испустила боевой клич? Почему мы не рождаемся уже подготовленными, с предварительно загруженными поведенческими программами и знаниями, необходимыми для выживания? Разве в дарвиновской борьбе за жизнь у животного, которое рождается зрелым и обладает более обширными знаниями, чем другие, не больше шансов победить и распространить свои гены? Зачем эволюции понадобилось изобретать научение?

Я отвечу так: предварительное программирование мозга и невозможно, и нежелательно. Невозможно? Но почему? Хотя бы потому, что для подробного кодирования всех наших знаний человеческой ДНК просто не хватило бы емкости. Наши двадцать три пары хромосом содержат три миллиарда пар «букв» A, C, G, T – молекул аденина, цитозина, гуанина и тимина. Сколько информации они несут? Информация измеряется в битах, которые могут иметь два значения: 1 или 0. Поскольку каждая из четырех букв генома кодирует два бита (мы можем записать их как 00, 01, 10 и 11), наша ДНК содержит в общей сложности шесть миллиардов битов. Однако, как вы помните, в современных компьютерах мы считаем информацию байтами – последовательностями из восьми битов. Следовательно, человеческий геном можно свести примерно к 750 мегабайтам. Это емкость старомодного компакт-диска или небольшого USB-накопителя! И это при том, что в своих расчетах мы не учитывали многочисленные повторения, которыми изобилует наша ДНК.

Из столь скромного объема информации, унаследованного нами спустя миллионы лет эволюции, наш геном, изначально ограниченный одной-единственной оплодотворенной яйцеклеткой, выстраивает весь план организма – каждую молекулу каждой клетки в печени, почках, мышцах и, конечно же, в мозге: восемьдесят шесть миллиардов нейронов, тысячу триллионов связей… Как же ему это удается? Если предположить, что каждое из наших нервных соединений кодирует только один бит (хотя это явное преуменьшение), емкость нашего мозга должна составлять около ста терабайт (или 1015 битов). Иными словами, его емкость в сто тысяч раз больше емкости нашего генома. Возникает парадокс: фантастический дворец, который представляет собой наш мозг, содержит в сто тысяч раз больше деталей, чем чертежи архитектора, которые используются для его постройки! Я вижу только одно объяснение: структурный каркас дворца возводится в соответствии с указаниями архитектора (генома), а детали находятся в ведении руководителя проекта, который корректирует план в зависимости от местности (окружающей среды). Поскольку с этой точки зрения предварительно описать человеческий мозг во всей его полноте невозможно, на помощь генам приходит научение.

Данная метафора, однако, не объясняет, почему научение столь распространено в животном мире. Даже простые организмы, вообще не имеющие коры головного мозга (например, дождевые черви, дрозофилы и морские огурцы), усваивают многие из присущих им форм поведения в результате научения. Рассмотрим маленького червячка под названием нематода, или C. elegans. За последние двадцать лет это миллиметровое животное стало настоящей лабораторной звездой: дело в том, что его строение в основном определяется генетически и может быть проанализировано вплоть до мельчайших подробностей. Большинство особей имеют ровно 959 клеток, включая 302 нейрона, все связи которых хорошо изучены. И все же нематоды учатся2. Первоначально исследователи рассматривали это существо как своего рода робота, который только и умеет, что плавать взад-вперед, однако позже было установлено, что ему доступны по крайней мере два вида научения: привыкание (габитуация) и ассоциация. Габитуация относится к способности организма адаптироваться к повторяющемуся стимулу (например, к молекуле в воде, в которой живет животное) и постепенно переставать реагировать на него. Ассоциация, напротив, состоит в обнаружении и запоминании аспектов окружающей среды, служащих надежными предикторами источника пищи или опасности. Нематода – чемпион ассоциации: она, например, может вспомнить, какие вкусы, запахи или температуры ранее были связаны с пищей (бактерии) или с молекулами репеллента (запах чеснока), и использовать эту информацию для выбора оптимального маршрута движения.

При таком небольшом количестве нейронов поведение червя вполне можно было бы запрограммировать заранее. Но это не так. Причина в том, что способность приспосабливаться к специфической среде, в которой животное родилось, крайне полезна и даже необходима для его выживания. Даже два генетически идентичных организма необязательно окажутся в одной и той же экосистеме. В случае нематоды способность оперативно корректировать свое поведение в зависимости от плотности, химического состава и температуры места, в котором она очутилась, позволяет ей выбирать оптимальный курс действий. В более общем смысле всякое животное должно быстро адаптироваться к непредсказуемым условиям текущего окружения. Естественный отбор – чрезвычайно эффективный алгоритм, открытый Дарвином, – безусловно, содействует адаптации каждого организма к своей экологической нише, но делает это с ужасающе низкой скоростью. Целые поколения будут обречены на смерть, прежде чем некая полезная мутация увеличит шансы вида на выживание. Способность учиться, напротив, работает гораздо быстрее: она может изменить поведение в течение нескольких минут, что является самой квинтэссенцией научения – привить навык максимально быстро адаптироваться к непредсказуемым условиям.

Вот почему учиться так важно. В ходе эволюции животные, которые обладали даже зачаточной способностью к научению, имели больше шансов выжить, чем те, чье поведение было фиксировано, а потому чаще могли передать свой геном (уже включающий генетически управляемые алгоритмы научения) следующему поколению. Таким образом, естественный отбор благоприятствовал развитию способности к научению. Эволюционный алгоритм помог сделать важное открытие: возможность быстро менять определенные параметры тела, чтобы приспособиться к изменчивым условиям окружающей среды, будет только на пользу.

1 2 3 4 5 6 7 8 9 10 ... 101
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?