Книги онлайн и без регистрации » Сказки » Теории Вселенной - Павел Сергеевич Данильченко
[not-smartphone]

Теории Вселенной - Павел Сергеевич Данильченко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 21
Перейти на страницу:
из которого следовало, что скорость распространения света в вакууме составляет 313000  .

Однако эти опыты не могли подтвердить, что же такое свет — волна или частица.

3. В 1852 г. английский ученый Максвелл определил скорость распространения электромагнитных волн теоретически. Он установил, что скорость распространения электромагнитных волн составляет 300000

.

Как только Максвелл получил значение этой скорости, естественно, он попытался выяснить, а есть ли такие объекты, которые обладают такой скоростью. В результате стало понятно, что такой объект есть и это, конечно, свет. То есть опыты Рёмера и Физо привели к тому, что в сочетании с результатами, полученными Максвеллом, стало ясно, что скорость распространения электромагнитных волн является не чем иным, как скоростью света. И теперь, конечно, остается сделать последний вывод — это то, что свет является не чем иным, как электромагнитной волной.

Казалось бы, после всех этих экспериментов, после всех этих выводов можно было оставить споры о том, что такое свет, и прийти к тому единственному решению, что свет — это электромагнитная волна. Однако хотелось бы отметить, что в дальнейшем, в самом конце 19 века были открыты явления, которые доказывали, что свет все-таки обладает свойствами частиц.

На сегодняшний день считается следующее: свет имеет двойную природу. Он одновременно и волна, и частица. Тогда, когда свет распространяется, т. е. от источника до наблюдателя, он ведет себя как волна. А тогда, когда он взаимодействует с поверхностью, с веществом или тогда, когда он рождается, при рождении света, он ведет себя как частица. Поток специальных частиц, которые составляют свет называется потоком фотонов. Одна частица, соответственно, — фотон.

Приблизительно к 1860 г. трудами Неймана, Вебера, Гельмгольца электродинамика уже считалась наукой окончательно систематизированной. Были созданы теоретические основы практических применений, к которым уже приступили. Но плавный ход развития нарушил молодой шотландский физик Джемс Клерк Максвелл (1831–1879). В непонятных современникам идеях Фарадея Максвелл увидел мощный метод исследования от общего к частному. Он начал с поляризации диэлектриков и токов смещения.

Вебер, а также Кирхгоф нашли скорость распространения электромагнитной индукции по проводу. Она оказалась близкой к скорости света. Этот вывод был сделан экспериментально и теоретически.

Как и в первой работе 1864 г., Максвелл исходит из своих уравнений и приходит к выводу, что в пустоте поперечные волны токов смещения распространяются с той же скоростью, что и свет. И это является подтверждением электромагнитной природы света.

Следствия теории Максвелла: наличие светового давления, взаимная ортогональность двух поляризованных волн: электрической и магнитной. По Максвеллу, “электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии”. Этой средой является эфир, пронизывающий все тела.

Поскольку впоследствии, в ХХ в., от гипотезы эфира отказались, а ответа на вопрос о том, что же колеблется в электромагнитных колебаниях, так и не получили, пришлось электромагнитное поле принять в качестве постулата, в качестве отдельной сущности (формы материи).

Основная гипотеза Максвелла при выводе уравнений — это гипотеза о токе смещения. Этот ток тоже создает магнитное поле. Над проверкой гипотезы Максвелла много работал Г. Герц. После его работ начали признавать и теорию Максвелла. Основной труд Максвелла — “Трактат об электричестве и магнетизме” (1873). Год выхода этого труда — это также год работы над трансатлантическим кабелем и год открытия фотопроводимости.

Существенным подтверждением электромагнитной теории света были опыты по измерению светового давления П.Н. Лебедева (1866–1912) в лаборатории Московского университета. К 20-м гг. нашего века был сокращен интервал между инфракрасным светом и радиоволнами: 400 мкм и 1.8 мм соответственно. Предварительное сообщение об измерении светового давления Лебедевым появилось в 1900 г., а публикация — в 1901. По этому поводу В. Томсон (лорд Кельвин) сказал: “Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами”.

Триумфом теории Максвелла было использование радиоволн для связи. Эта идея была высказана еще Герцем, который открыл электромагнитные волны. Но впервые реализовал радиосвязь А.С.Попов (1859–1906) в 1895–1896 гг. В 1896 г. им была принята первая в мире радиограмма из двух слов: “Генрих Герц” (с расстояния в 250 м). В том же 1996 г. Гульельмо Маркони взял патент на приемо-передающее устройство, работающее на радиоволнах. Впоследствии он получил за это Нобелевскую премию.

Интерференция

Во время борьбы двух теорий, волновой и корпускулярной, естественно, каждый из апологетов той или иной теории искал определенную опору в опытах. Что касается волновой теории, очень важное значение получило явление, которое было открыто Томасом Юнгом в 1802 г., и называется это явление интерференцией. Это наложение двух когерентных волн, в результате которого образуется устойчивая картина из максимумов и минимумов. Надо сказать, что интерференция света представляет собой достаточно известную всем картину — это когда чередуются светлые и темные световые полоски. Вам всем известна интерференция в тонких пленках, — когда мы наблюдаем мыльный пузырь в солнечном свете, то видим, как он переливается разноцветными цветами. Это и есть проявление интерференции света.

То же самое происходит летним днем, когда мы наблюдаем поверхность лужи, то можем видеть в тонкой пленке такое же разноцветное чередование полос. Интерференция — это явление волновое, поэтому после опытов Т. Юнга стало ясно, что свет является по большей части, видимо, волной, т. е. это явление доказывало, что свет — это волна.

«В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.

В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых».

Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С.

1 ... 12 13 14 15 16 17 18 19 20 21
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?