Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - Скотт Бембенек
Шрифт:
Интервал:
Закладка:
Ну, проще говоря, потому что именно это и требуется, чтобы не нарушить систему настолько, чтобы ее нельзя было вернуть к исходному состоянию. Удивительно ли, что системы в природе или повседневной жизни необратимы? Обратимость хорошо работает как математическая модель, которая применима к нашей повседневной жизни, даже если Вселенная работает не совсем так.
Для теплового двигателя обратимость означает не только механическую обратимость (как у качелей), но и тепловую. В нашем примере с качелями мы были уверены, что перемещали кирпичи вверх и вниз на определенные расстояния. В тепловом двигателе протекают похожие механические процессы, но также присутствует разница температур (температурный градиент). Тепловая обратимость достигается с помощью передачи тепла из горячего резервуара в холодный «маленькими шажками».
Это обеспечивают теми же средства, что и в примере выше, только в этот раз мы приложим наименьшую термическую силу для передачи тепла. В частности, мы хотим, чтобы тепло переместилось из нагревателя в холодильник через участки, где снижение температуры минимально. На практике это означает, что горячая и холодная части теплового двигателя (механическая часть и рабочее тело), которые находятся в контакте, должны мало отличаться по температуре.
Конечно же, обратимость – это идеализация. Ее легко представить в теории, но невозможно достигнуть на практике. Нельзя изменять систему столь малыми шагами, поскольку выполнение даже простой задачи займет слишком много времени – практически вечность.
Более того, идет ли речь о механическом трении (как в примере с качелями) или о тепловом трении – следствии взаимодействия разных температур (как в двигателе вашего автомобиля), – в любом случае произойдет потеря определенного количества тепла. Как бы то ни было, обратимость дает нам эффективную математическую модель, устанавливая недостижимую верхнюю границу (своего рода «золотой стандарт») для всех реальных систем. Это позволило Карно глубже понять природу тепловых двигателей и указало на новую физическую величину.
Карно понял, что тепло переходит от горячего к холодному, а тепловой двигатель позволяет использовать это, чтобы производить работу. Он считал, что разница температур схожа с разницей высот, которая требуется для работы водяного двигателя. Примером водяного двигателя может быть колесо, расположенное внизу водопада. Вода, текущая сверху, вращает водяное колесо, и это движение используют для работы. Водяное колесо особенно эффективно, когда каждая капля воды, падающая сверху, ударяет колесо и вращает его; вода, которая падает мимо водяного колеса, не участвует в движении и потому снижает производительность.
Аналогично Карно предположил, что подобные явления справедливы и для тепловых двигателей. Более того, он считал, что невозможно извлечь работу из тепла при отсутствии разницы температур: должен быть нагреватель (источник) и холодильник (теплоприемник), чтобы двигатель работал – так же как должна быть разница высот для того, чтобы вода текла и двигала водяное колесо.
Он также был убежден, что при этом тепло обязано сбрасываться. Карно считал, что как в водяном колесе вода падает из высокой точки в низкую, так и тепло в тепловом двигателе «падает» из области высокой температуры в область низкой, в конце концов полностью «перетекая» в холодный резервуар.
При работе водяного двигателя вода перетекает сверху вниз, полностью сохраняя свой объем (кроме той части, которая испаряется). Карно как сторонник теплородной теории придерживался этой аналогии с водяным двигателем и был уверен, что так же сохраняется и тепло в тепловом двигателе и в процессе его работы все тепло из горячего резервуара перейдет в холодный.
Примерно через 30 лет после открытия первого начала термодинамики стало ясно, что сохраняется вовсе не тепло, а скорее энергия в целом. Так что количество тепла, изначально покинувшего горячий резервуар, равняется сумме количества тепла, поступившего в холодный резервуар, и работы, проделанной тепловым двигателем.
Математическая модель обратимого теплового двигателя Карно позволила ему прийти к важнейшим выводам. Чтобы понять важность его модели, проведем мысленный эксперимент. Представим, что у нас есть два обратимых тепловых двигателя Карно (см. рис. 5.2). Назовем их «двигатель 1» и «двигатель 2» и подключим к одним и тем же горячему и холодному резервуарам. Теперь представим, что каждый из них выполняет разное количество работы. Для ясности назовем эти количества W1 и W2, при этом W1 больше, чем W2. Другими словами, производительность двигателя 1 выше, чем производительность двигателя 2.
Рис. 5.2. Представим, что двигатель 1 получает начальное количество теплоты (qн) от нагревателя. Некоторое количество этой энергии (qх) поступает в холодильник, в то время как оставшаяся энергия используется для работы (двигатель обратимый, поэтому нет потери тепла в результате механического или термического трения). Некоторая часть этой работы используется для запуска двигателя 2, так как тепловой насос забирает обратно из холодного резервуара такое же количество теплоты (qх, которое перешло из двигателя 1), добавляя часть собственного тепла, и теперь способен передать полное изначальное количество теплоты (qн, переданное двигателем 1) обратно в горячий резервуар. Далее представим, что двигатель 1 может сделать все это, и у него останется излишек работы.
Ключевая особенность здесь – обратимость тепловых двигателей, которая заключается в отсутствии необходимости преодоления механического или термического трения. Поэтому требуется крохотный объем работы – в дополнение к производимой, – чтобы превратить двигатель в тепловой насос, который берет энергию из холодного резервуара и направляет ее в горячий. Это происходит аналогично нашему примеру с обратимыми качелями, где мы в любой момент движения могли изменить его направление путем приложения малой силы. Мы знакомы с тепловым насосом – холодильник, который поддерживает низкую температуру, выводя внутреннее тепло в окружающую среду. В самом деле, тепловой насос похож на водный насос, по сути являющийся водяным двигателем, который может быть обратимым, что позволяет перемещать воду с меньшей высоты на бо2льшую.
Поскольку у двигателя 1 больше объем производимой работы (W1), мы используем его для работы двигателя 2 в обратном режиме, превращая его в тепловой насос. Теперь мы можем создать следующий цикл: двигатель 1 забирает начальный объем тепла (qн) из нагревателя, передает его часть qх в холодильник и выполняет работу. Эта работа заставляет двигатель 2 забрать такой же объем тепла (qх, который передал двигатель 1) обратно из холодильника и добавить часть собственного тепла, таким образом передав полный объем тепла (qн) обратно в нагреватель. Более того, мы можем представить, что двигатель 1 может проделать все это, и у него останется излишек работы. Наконец, весь этот процесс обратим благодаря тому, что не происходит потерь тепла из-за механического или термического трения.