Смерть в черной дыре и другие мелкие космические неприятности - Нил Деграсс Тайсон
Шрифт:
Интервал:
Закладка:
4 H → He + энергия.
И стал свет!
Каждый раз, когда создается ядро гелия, возникают и частицы света – они называются фотонами. В этих фотонах заключено достаточно энергии, чтобы назвать их гамма-лучами – разновидностью света, обладающей самой большой энергией по существующей классификации. Фотоны гамма-излучения, от рождения движущиеся со скоростью света – 300 000 километров в секунду, – волей-неволей начинают пробиваться к поверхности Солнца. Если фотону не мешать, он будет двигаться по прямой. Однако, если что-то встает у него на пути, он либо отражается, либо поглощается, а затем испускается снова. В результате каждого из конкретных вариантов взаимодействия фотон летит в разных направлениях с разной энергией. Учитывая плотность солнечного вещества, средний путь фотона по прямой длится меньше одной тридцатимилилардной доли секунды (тридцатая часть наносекунды) – за это время фотон еле-еле успевает пролететь около сантиметра, после чего взаимодействует либо со свободным электроном, либо с атомом.
После каждого взаимодействия направление движения фотона меняется – то ли наружу, то ли в сторону, то ли даже обратно. Как же бесцельно блуждающий фотон умудряется покинуть Солнце? Отчасти это можно понять на примере горького пьяницы, который случайным образом шагает в разные стороны от фонарного столба на углу. Как ни странно, есть вероятность, что пьяница с этим столбом больше не встретится. Если направление его шагов и вправду случайно, расстояние от столба будет мало-помалу увеличиваться.
Нельзя точно предсказать, далеко ли уйдет от столба тот или иной пьяница после того или иного числа шагов, но вполне можно оценить среднюю дистанцию, если, конечно, удастся уговорить достаточно большую выборку пьяниц достаточно долго шагать в случайном направлении на благо науки. Данные покажут, что в среднем расстояние до столба увеличивается пропорционально квадратному корню из общего числа сделанных шагов. Например, если каждый пьяница сделает 100 шагов в случайном направлении, среднее расстояние от столба составит всего 10 шагов. Если 900, среднее расстояние вырастет всего до 30 шагов.
Шаг фотона составляет один сантиметр, поэтому ему придется сделать почти 5 секстильонов шагов, чтобы «случайно пройти» 70 миллиардов сантиметров, отделяющих центр Солнца от поверхности. Совокупный пройденный путь на тот момент составит около 5000 световых лет. Поскольку фотон летит со скоростью света, это путешествие, очевидно, займет у него 5000 лет. Но если учесть при подсчете более реалистичную модель Солнца, например то, что около 90 % массы Солнца помещается в пределах половины его радиуса, поскольку газообразное Солнце сжимается под собственным весом, и добавить время, которое теряется на остановки между поглощением и повторным испусканием фотона, на путешествие у фотона уйдет около миллиона лет. Если бы путь от центра до поверхности Солнца был свободен, он занял бы всего 2,3 секунды.
Уже в 1920-е годы у нас появилось некоторое представление о том, что фотон при попытке выбраться из Солнца должен встретить серьезное сопротивление. А подвести под исследования структуры звезд достаточный физический фундамент, чтобы найти решение этой задачи, удалось весьма колоритной фигуре – британскому астрофизику сэру Артуру Стенли Эддингтону. В 1926 году он написал книгу «The Internal Constitution of the Stars» («Внутреннее устройство звезд») и опубликовал ее сразу после открытия новой отрасли физики под названием «квантовая механика», однако за 12 лет до того, как источником энергии Солнца был официально объявлен термоядерный синтез. Едва ли не досужие рассуждения Эддингтона во вводной главе отражают если не все детали, то хотя бы общую суть тернистого пути эфирной волны (то есть фотона):
Внутренность звезды – это кипучая смесь атомов, электронов и эфирных волн. Чтобы уследить за всеми фигурами их затейливого танца, нам придется прибегнуть к помощи последних открытий в области атомной физики… Только представьте себе эту суматоху! Растрепанные атомы мечутся со скоростью 50 миль в секунду, от их изысканных одежд из электронов остались лишь лохмотья – их сорвали в толчее. Потерянные электроны разгоняются в сто раз быстрее, чтобы найти новое прибежище. Берегитесь! За [одну десятимиллиардную] секунды электрон тысячу раз едва успевает избежать лобового столкновения… Затем… электрон все же попадает в ловушку, присоединяется к атому, его свободной карьере конец. Но лишь на миг. Только-только атом успевает прицепить к своему охотничьему поясу очередной скальп, как на него налетает квант эфирной волны. Взрыв – и электрон снова устремляется навстречу новым приключениям.
С тем же жаром и любовью к своему предмету Эддингтон пишет и о том, что эфирные волны – единственные составляющие Солнца, которым предстоит далеко пойти:
Наблюдая эту сцену, мы задаемся вопросом: неужели это и есть величественная драма звездной эволюции? Это куда больше похоже на клоунаду, когда комедианты весело разбивают друг о дружку горшки. Комедия положения в атомной физике не очень-то соответствует нашему представлению о прекрасном… Атомы и электроны, как бы ни суетились, никогда никуда не попадут, они лишь меняются местами. Единственная часть населения, которой предстоит хоть чего-то достичь, – это эфирные волны; на первый взгляд они беспорядочно мечутся во все стороны, однако, сами того не замечая, мало-помалу продвигаются к поверхности.
На четверть радиуса под поверхностью Солнца энергия в основном перемещается посредством бурной конвекции – процесса, очень похожего на кипение бульона в кастрюле (или на кипение чего угодно в кастрюле). Огромные пласты и комья горячего вещества поднимаются вверх, а другие, более холодные пласты и комья тонут. Наш трудяга-фотон и не подозревает, что пласт вещества, в котором он очутился, проваливается на несколько десятков тысяч километров обратно к центру Солнца и тысячи лет случайных метаний идут насмарку. Верно, конечно, и обратное: благодаря конвекции мечущиеся фотоны могут быстро оказаться у поверхности, что повышает их шансы на побег.
Однако сказание о мытарствах гамма-луча еще не кончено. Температура в центре Солнца составляет 15 миллионов градусов по Кельвину, а у поверхности – 6000 градусов, так что она падает в среднем на одну сотую градуса на метр. При каждом поглощении и испускании фотона высокоэнергичные фотоны гамма-лучей частенько порождают множество фотонов с более низкой энергией – ценой собственного существования. Подобный альтруизм происходит во всем спектре от гамма-лучей, рентгеновских и ультрафиолетовых фотонов до видимого и инфракрасного света. Энергии одного-единственного гамма-фотона хватает на порождение тысячи рентгеновских фотонов, каждый из которых в конечном счете породит тысячу фотонов видимого света. Иначе говоря, к тому времени, как случайные метания выведут один-единственный фотон гамма-луча на поверхность Солнца, он, скорее всего, успеет породить свыше миллиона видимых и инфракрасных фотонов.
В сторону Земли направляется лишь один из полумиллиарда фотонов, вырывающихся из Солнца. Понимаю, на первый взгляд кажется, что это очень мало, но при наших размерах и расстоянии от Солнца Земле достается как раз столько, сколько нужно. А остальные фотоны разлетаются кто куда.