Книги онлайн и без регистрации » Домашняя » Суперобъекты. Звезды размером с город - Сергей Попов
[not-smartphone]

Суперобъекты. Звезды размером с город - Сергей Попов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 48
Перейти на страницу:

Например, можно наблюдать остывающие нейтронные звезды. Это похоже на то, как врачи раньше, не имея продвинутых способов заглянуть внутрь пациента, ставили диагноз, измеряя температуру тела. Нейтронные звезды рождаются горячими, с температурой поверхности несколько миллионов градусов. Новорожденных, с возрастом порядка нескольких лет или десятков лет, компактных объектов мы пока не видим. Самые молодые из известных имеют возраст порядка нескольких сотен лет. Это соответствует температуре поверхности около миллиона градусов. Мы видим эту горячую поверхность, т. е. мы видим такие нейтронные звезды. Мы, возможно, даже наблюдаем сейчас совершенно уникальную вещь: как звезда остывает буквально у нас на глазах. За несколько лет наблюдений у одной из нейтронных звезд – это центральный компактный объект в остатке сверхновой Кассиопея А – удалось заметить, как температура упала на несколько процентов. (Тут, правда, идут споры: видим ли. И неудивительно, так как поймать эффект трудно.) И это дает нам информацию, что происходит в недрах, потому что нейтронная звезда, как мы уже говорили, остывает изнутри, а не с поверхности.

Итак, напомним: обычно тела остывают снаружи и, как правило, горячий объект на поверхности холоднее, чем внутри. У нейтронных звезд ситуация немножечко более хитрая. Хотя, исключая короткий период младенчества, формально они все равно горячее в центре, но энергия уносится не столько фотонами с поверхности, сколько нейтрино, вылетающими прямо из недр.

Суперобъекты. Звезды размером с город

Рентгеновское изображение остатка сверхновой Puppis A. В нем находится остывающая нейтронная звезда, относящаяся к классу центральных компактных объектов.

Нейтронная звезда, кроме первой минуты своей жизни, прозрачна для нейтрино, и поэтому остывание первые сотни тысяч лет (иногда меньше – зависит от массы объекта) идет в основном изнутри, а тепло течет из внешних слоев внутрь, оттуда энергия излучается в виде нейтрино. Поэтому, наблюдая температуру поверхности, мы косвенно получаем информацию о том, что происходит в глубине.

В разных процессах с участием разных частиц темп излучения нейтрино должен быть различным. Поэтому кварковые звезды должны остывать не так, как звезды, состоящие из протонов и нейтронов; гиперонные звезды – не так, как объекты с большой долей пионного конденсата, и т. д. Значит, при той же массе и том же возрасте компактные объекты разного состава (и строения) будут иметь разную температуру поверхности. Сравнивая данные наблюдений с теоретическими расчетами остывания разных типов компактных объектов, можно надеяться продвинуться в изучении тайны их недр.

Здесь можно использовать как наблюдения отдельных объектов с хорошо известными параметрами (например, очень важно точно знать возраст и расстояние), так и данные по целым популяциям. Скажем, возьмем все близкие молодые одиночные нейтронные звезды (с возрастами меньше миллиона лет и расстоянием менее нескольких тысяч световых лет от нас) и посмотрим их распределение по температурам. Можно ли его объяснить, если все звезды кварковые или хотя бы половина? Получится ли описать эту популяцию, предположив, что молодые нейтронные звезды редко бывают настолько тяжелыми, чтобы там шел прямой урка-процесс? В наших работах с Давидом Блашке, Ховиком Григоряном и другими при помощи компьютерного моделирования мы смогли ответить на некоторые из этих вопросов. Мы можем отбрасывать некоторые варианты строения компактных объектов. Но для окончательного ответа пока не хватает ни наблюдательных данных, ни понимания физических процессов в недрах нейтронных звезд.

Глитчи

Радиопульсары на протяжении жизни замедляют свое вращение. Однако на фоне постоянной потери вращательной энергии иногда происходят «взбрыки». Пульсар резко увеличивает свою частоту вращения, а потом снова продолжается замедление. Период при таком событии уменьшается совсем чуть-чуть – например, на одну миллионную или даже миллиардную долю, но уже в начале 1970-х годов точность наблюдений позволяла это заметить. Такие события назвали глитчами.

То, что глитчи сообщают нам что-то очень важное о физике нейтронных звезд, было ясно сразу. Но что? Довольно быстро появились две основные идеи о происхождении глитчей. Первая кажется более наглядной. Это звездотрясения.

Представьте себе каплю воды в невесомости. Если она не вращается и никаких внешних воздействий нет, то капля примет точно сферическую форму из-за действия сил поверхностного натяжения. Раскрутим каплю – получим так называемый эллипсоид вращения: на полюсах – сплюснуто, вдоль экватора – вытянуто. Пусть теперь вращение капли постепенно замедлится, тогда и она снова постепенно станет сферой. Теперь на место капли поместим нейтронную звезду. Своей сферической формой она обязана действию гравитации. Ее вращение замедляется на стадии радиопульсара, но плавно изменять свою форму она не может: ведь у нее жесткая кора. Поэтому в коре постепенно растут механические напряжения, и наконец наступает момент, когда материал коры больше не может им сопротивляться. Кора резко переходит в новое состояние – звезда разом меняет свою форму. Именно в этот момент пульсар должен немного ускорить свое вращение. Очень красивая идея, но со временем стало ясно, что она не безупречна. Сам скачок периода она объясняет хорошо, но вот постепенную релаксацию темпа вращения после глитча – плохо. Поэтому сейчас более популярна другая гипотеза.

Суперобъекты. Звезды размером с город

Глитч пульсара. Видно, как на фоне монотонного роста периода вращения происходит резкий скачок – уменьшение периода.

Несколько лет назад в гонках «Формула-1» была введена обязательная система рекуперации кинетической энергии – KERS (kinetic energy recovery system). Сейчас все такие системы основаны на зарядке аккумуляторов. Но среди первых были и механические. Идея проста: машина тормозит, но часть кинетической энергии не рассеивается, а идет на раскручивание массивного маховика. Позже, когда понадобится дополнительное ускорение, энергию вращения маховика можно передать на вал, и машина резко прибавит скорость. Похожий механизм, вероятно, действует и у нейтронных звезд.

В коре нейтронной звезды, во внутренних частях, нейтроны могут находиться в сверхтекучем состоянии. Это все меняет, так как сверхтекучая жидкость вращается странным образом. Если взять кастрюлю сверхтекучей жидкости и начать ее вращать, то вначале жидкость вообще не будет вращаться. Затем, при достижении критического темпа вращения, в центре кастрюли появится вихрь. Раскрутим еще сильнее – появится второй, третий и т. д. Но остальная часть жидкости вращаться не будет. Свойства вихрей квантованы, а их число соответствует темпу вращения сосуда: чем быстрее вращение – тем больше вихрей.

Замедление вращения нейтронной звезды связано с воздействием сил на ее кору. Кора жестко связана с основной массой недр звезды – с ее ядром, но не со сверхтекучими нейтронами во внутренней коре. Поэтому, пока вся звезда замедляется, нейтронная жидкость в коре вращается (как умеет, т. е. за счет вихрей) с тем же темпом, что и раньше. Накапливается разница скоростей вращения, но это не может продолжаться бесконечно. В какой-то момент система вихрей резко перестраивается, меняется их число. Теперь нейтронная жидкость подстроилась под общий темп вращения звезды, т. е. замедлилась. Но система-то у нас замкнутая! Сверхтекучая жидкость передала избыточную часть своего вращения коре, которую мы наблюдем. Поэтому вся остальная звезда немного увеличивает скорость вращения – происходит глитч.

1 ... 11 12 13 14 15 16 17 18 19 ... 48
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?