От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов
Шрифт:
Интервал:
Закладка:
Все животные, о которых мы до сих пор говорили, были “травоядными” — хотя бы в самом наиширочайшем смысле этого слова. Они питались или фотосинтезирующими организмами, или, на худой конец, чьими-то останками. При этом собственная биомасса “травоядных” представляла собой ценный (и до какого-то момента совершенно невостребованный) ресурс для животных, питающихся другими животными, то есть для хищников.
Поначалу никаких многоклеточных хищников просто не существовало. Но при наличии таких атрибутов активной жизни, как нервная система, мускулатура и ротовой аппарат, их появление было всего лишь вопросом времени. Первые крупные хищники, уже совершенно определенно специализированные на питании другими многоклеточными животными, появляются в летописи примерно 520 миллионов лет назад. Это динокариды — хорошо плавающие существа, родственные членистоногим[486]. Самый известный представитель динокарид — аномалокарис, стройное сегментированное создание длиной около метра со сложными фасеточными глазами и мощными членистыми околоротовыми конечностями, явно служившими для захвата крупной подвижной добычи (см. рис. 17.2). В самом начале кембрия подобных хищников нет. Пресловутая “скелетная революция”, несомненно, в какой-то мере стала ответом на их появление — изменение химического состава морской воды только облегчило ее. А появление скелетов, в свою очередь, запустило освоение новых и новых экологических ниш.
Стивен Стэнли совершенно правильно писал, что для объяснения кембрийского взрыва вполне достаточно чисто биологических причин. Факторы, действующие на биосферу извне, могли повлиять на скорость того или иного процесса, но все главные события можно объяснить и без них. Вспышка разнообразия многоклеточных животных была естественным результатом серии автокаталитических процессов, запущенных появлением первых “травоядных” (вроде кимбереллы) и происходивших на уровне природных сообществ, то есть, иначе говоря, экосистем. Вне экологии понять кембрийский взрыв невозможно.
С появлением хищников процесс образования новых жизненных форм стал понемногу тормозиться. Репертуар экологических ниш сложился, почти все они уже были распределены и заняты. Разумеется, расширение сообществ продолжалось и дальше — просто медленнее. Например, только после окончания кембрийского периода появились лопатоногие моллюски, занявшие довольно-таки экзотическую нишу роющих хищников, преследующих своих жертв внутри грунта[487]. Но такого размаха, как на рубеже эдиакария и кембрия, крупномасштабная эволюция животных больше никогда не достигала.
С точки зрения событийной истории началом кембрийского взрыва можно считать появление первых эффективных водорослеедов (кимберелла), а концом — появление первых эффективных хищников (аномалокарис). Кимберелла появилась 555 миллионов лет назад, аномалокарис — 520 миллионов лет назад, интервал между ними — 35 миллионов лет. Не так уж и быстро.
Выход жизни на сушу — событие, настолько сильно растянутое во времени, что его просто невозможно рассматривать как четкий порог. Более того, сама постановка вопроса о выходе на сушу на самом деле спорна. Утверждение “море — колыбель жизни” вовсе не настолько само собой разумеющееся, как может показаться.
Например, в последние годы стала популярной гипотеза, согласно которой жизнь возникла не в океане, а в мелких наземных водоемах[488]. В пользу этой гипотезы есть несколько биохимических доводов, самый простой и наглядный из которых следующий. Известно, что цитоплазма практически всех живых клеток содержит гораздо больше ионов калия (K+), чем ионов натрия (Na+). Между тем почти во всех природных водоемах соотношение концентраций этих ионов в точности обратное. В морской воде в 40 раз больше натрия, чем калия, а в живой клетке, наоборот, в 10–20 раз больше калия, чем натрия. Внутриклеточный избыток калия важен для работы многих ферментов, и в том числе для системы синтеза белка. Причем анализ генных последовательностей показывает, что эти калий-зависимые ферменты очень древние. Скорее всего, они были уже у общего предка всех современных живых организмов. Значит, первые клетки формировались в среде, где калия было намного больше, чем натрия. Океан такой средой быть не мог. Гораздо вероятнее, что это были горячие источники, вода в которых как раз может иметь подходящий химический состав. И располагаться эти источники могли как в море, так и на суше (см. главу 11).
Но даже если живые клетки появились в неглубоких водоемах на суше, то после этого они быстро заселили океан. Дело в том, что по большинству параметров морская среда намного комфортнее наземной: в ней всегда хватает воды, и в нее почти не проникают опасные для клеток ультрафиолетовые лучи. Сейчас ультрафиолетовый компонент солнечного света экранируется слоем атмосферы, обогащенным газом озоном (O3), который постоянно образуется в небольшом количестве из атмосферного кислорода (O2). До кислородной революции на Земле не было никакого озонового слоя, поэтому защищать клетки от ультрафиолетовых лучей могла только вода. Получается, что океан был если и не колыбелью жизни, то уж точно ее убежищем на первые несколько миллиардов лет эволюции.
Первые признаки жизни на суше относятся еще к раннему докембрию[489]. В основном это палеопочвы, обогащенные “легким” изотопом углерода 12C — как мы помним, именно по этому критерию биогенный углерод, прошедший по биохимическим путям живых клеток, отличается от абиогенного. Первые такие палеопочвы имеют возраст примерно 2,7 миллиарда лет, но не исключено, что они существовали и раньше. Это — архейская эпоха, когда на Земле жили одни прокариоты. Зная, насколько огромны экологические возможности прокариот, нетрудно допустить, что кто-то из них прижился и в таком негостеприимном месте, как архейская суша.
Первое прямое свидетельство наземной жизни — остатки нитчатых синезеленых водорослей в ископаемой пещере возрастом 1,2 миллиарда лет[490]. Этот момент времени относится к эпохе “скучного миллиарда лет”, когда синезеленые водоросли, они же цианобактерии, уже не только были многочисленны, но и мало чем отличались от своих современных родичей. А о современных синезеленых водорослях известно, что они довольно часто живут вне воды, например на почве или на скалах. Так что никаких серьезных причин сомневаться в этой находке нет.