Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов
Шрифт:
Интервал:
Закладка:
Обычно микроскопические магниты в железе сравнительно легко ориентируются под воздействием магнита и так же легко дезориентируются, когда магнит убирают. Железо обычно формирует временный магнит. А вот если стальной брусок подвергнуть действию магнита, микроскопические магниты в стали ориентируются с большим трудом.
Однако когда магнит удаляют от стали, дезориентация происходит с таким же трудом — она достаточно затруднена, чтобы фактически вообще не происходить в обычных условиях, следовательно, сталь обычно остается постоянным магнитом.
Не только железо состоит из микроскопических магнитов, и не только железо притягивается к магниту. Другие металлы, такие как кобальт и никель (которые химически близки к железу) и гадолиний (который к нему не близок), притягиваются магнитом. Также и ряд металлических сплавов, одни из которых содержат железо, а другие — нет. Например, альнико, который, как явствует из названия, состоит из алюминия, никеля и кобальта (плюс немного меди), можно использовать, чтобы делать магниты сильнее стальных. С другой стороны, нержавеющая сталь, которая больше чем на три четверти состоит из железа, воздействию магнита не поддается.
Магнетическое вещество не обязательно должно быть металлом. Сам по себе магнитный железняк является разновидностью оксида железа, скорее почвенным, чем металлическим веществом. После Второй мировой войны был изучен целый новый класс магнитных веществ. Это ферриты, являющиеся смешанными оксидами железа и других металлов, таких как кобальт или марганец.
Материал, который демонстрирует или который можно заставить продемонстрировать сильную магнитную силу того рода, что мы привыкли видеть в обычном магните, считается ферромагнитным (от латинского слова ferrum, что означает «железо», поскольку наиболее известным примером такого вещества является железо). Никель, кобальт, альнико, конечно, железо и сталь являются примерами ферромагнитных веществ.
Возникает вопрос, почему одни материалы ферромагнитны, а другие — нет. Если магнитные силы — свойства всей материи (а так оно и есть), почему микроскопические магниты чистой меди или чистого алюминия, например, не могут выстраиваться под воздействием имеющегося магнита? Очевидно, это выравнивание не может быть введено извне, без помощи, так сказать, самого вещества.
В ферромагнитных веществах (но даже в них только при определенных условиях) уже присутствует большая часть выравнивания в естественном состоянии. Микроскопические магниты стремятся сориентироваться параллельно миллиардами миллиардов, приводя к появлению концентраций на северном и южном полюсах то тут, то там внутри железа. Области, где таким образом сконцентрированы магнитные силы, называются магнитными областями.
Железо и другие ферромагнитные вещества состоят из таких магнитных областей, каждая из которых почти заметна. Хорошо размельченный порошок магнитного оксида железа, если его рассыпать по железу, будет проявлять тенденцию к тому, чтобы собираться на границах между смежными областями и делать их видимыми глазу.
Несмотря на присутствие этих областей, железо обычно не является магнитом. Это потому, что сами области сориентированы случайным образом, так что магнитная сила одних нейтрализуется магнитной силой соседних. Следовательно, контакт с обычным магнитом не ориентирует сами микроскопические магниты (это превыше его сил) — он просто ориентирует эти области. Так, ферромагнитный материал уже проделал почти всю работу по выравниванию и остается сделать только последний шаг для выравнивания, незначительный по сравнению с тем, что уже сделано для того, чтобы получить магнит.
Если ферромагнитное вещество разбить на части меньше отдельных составляющих его областей, то каждая такая часть будет представлять собой отдельную область или часть области. Микроскопические магниты в каждой из них будут полностью выровнены. Если такой порошок растворить в жидком пластике, области эти легко и с большой точностью могут быть выровнены под воздействием магнита в то время, когда эти частицы будут вращаться, преодолевая малое сопротивление жидкости (в отличие от гораздо большего сопротивления самого железа в твердом состоянии).
Если дать пластику затвердеть в то время, когда система все еще находится под действием магнита, области будут выровнены навсегда, и сформируется особо сильный магнит. Более того, таким магнитам можно придать любую форму и можно легко переделать в другую форму.
Все, что может нарушить выравнивание областей, ослабит или разрушит магнитную силу даже «постоянного» магнита. Если два магнита положить рядом, севером к северу и югом к югу, то магнитное отталкивание приведет к тому, что области постепенно будут отодвигаться друг от друга, — это разрушит выравнивание и ослабит магнитную силу (именно поэтому магниты всегда следует складывать севером к югу). С механической точки зрения, если магнит ударить молотком, то вибрация разрушит выравнивание и ослабит магнитную силу.
В особенности магнитные области разрушает возрастающая вибрация атомов, вызванная повышением температуры (см. ч. I). Фактически для каждого ферромагнитного вещества есть характеризующая его температура, выше которой выравнивание областей разрушается и при нагревании выше которой вещество соответственно теряет свои ферромагнитные свойства.
Впервые это было продемонстрировано французским физиком Пьером Кюри (1859–1906) в 1895 году, и поэтому пороговое значение температуры называется точкой Кюри. Точка Кюри обычно находится ниже точки таяния жидкости, поэтому жидкости, как правило, не ферромагнитны. Например, точка Кюри для железа — 760 C°, в то время как его точка плавления — 1539 °С. Для кобальта точка Кюри сравнительно высока — 1130 °С, в то время как для гадолиния сравнительно низка — 16 °С. Гадолиний ферромагнитен только при температурах ниже комнатной. Точка Кюри может располагаться на действительно низких температурах. Для металла диспрозия ее значение около –188 °С (85 °К), так что в диспрозии области формируются только при температурах жидкого воздуха и только тогда он становится ферромагнитным.
В некоторых веществах микроскопические магниты сами собой выравниваются, но не таким образом, что северные полюса указывают все в одном направлении. Вместо этого магниты действительно выравниваются параллельным образом, но так, что в половине случаев северные полюса указывают в одном направлении, а в половине — в другом. Такие вещества называют антиферромагнитными, и из-за того, что магнитные силы одного выравнивания аннулируются магнитными силами другого, общее магнитное поле равняется нулю. Однако может оказаться, что структура вещества будет такой, что магниты с северными полюсами в одном направлении окажутся сильнее, чем магниты с северными полюсами в другом. В этом случае будет сравнительно устойчивое магнитное поле, и такие вещества называют ферримагнитными (обратите внимание на разницу в гласной!).
Примерами ферримагнитных материалов являются ферриты. Естественно, ферримагнитный материал не может быть таким сильным магнитом, как ферромагнитный, поскольку в последнем в идеальном случае все области сориентированы в одном направлении, в то время как в первом имеет место значительная нейтрализация. Так, ферриты представляют магниты в лучшем случае в три раза слабее стального.