Увлекательно о космосе. Межпланетные путешествия - Яков Перельман
Шрифт:
Интервал:
Закладка:
Наблюдая падение яблока на Землю, не думайте, что земной шар остается неподвижен, нарушая закон противодействия. Притяжение и здесь взаимное; сила действия Земли на яблоко вызывает точно такую же силу противодействия. Яблоко и Земля буквально падают друг на друга, влекомые равными силами; но так как масса земного шара неизмеримо больше массы яблока, то скорость падения Земли неизмеримо меньше скорости падения яблока. Пока яблоко падает с дерева на Землю, наша планета перемещается навстречу яблоку едва на одну стотриллионную долю сантиметра. Практически Земля остается неподвижной, и замечается лишь движение яблока.
Этот-то закон, впервые провозглашенный великим Ньютоном, открывает перед нами возможность свободно двигаться, ни на что не опираясь. Перемещаться, ни от чего не отталкиваясь, одними лишь внутренними силами – не звучит ли это так, как поднятие самого себя за волосы по анекдотическому способу барона Мюнхгаузена? Но сходство – чисто внешнее. По существу, разница здесь огромная, и насколько бесполезно поднимать себя за волосы, настолько действителен способ движения по принципу отдачи. Природа давно уже осуществила такое перемещение для многих живых существ. Каракатица набирает воду в жаберную полость и затем энергично выбрасывает струю воды через особую воронку впереди тела; вода устремляется вперед, а тело каракатицы получает обратный толчок, отбрасывающий ее назад; направляя трубку воронки вбок или вниз, животное может таким своеобразным способом двигаться в любом направлении. Подобным же образом перемещают свое тело медузы, сальпы, личинки стрекоз и многие другие обитатели вод. Пользуется этим приемом и человеческая техника: вращение водяных и так называемых реакционных паровых турбин тоже основано на законе противодействия.
Рис. 17. Увеселительная ракета с цветными звездками (шарики состава бенгальского огня в головной части ракеты)
Нигде, однако, интересующий нас способ перемещения не проявляется так наглядно, как при полете обыкновенной ракеты. Сколько раз любовались вы ее эффектным взлетом, но приходило ли вам в голову, что вы видите перед собою уменьшенное подобие будущего межзвездного дирижабля? А между тем еще гениальный Гаусс предрекал ракете в будущем великое значение, более важное, чем открытие Америки…
Отчего ракета взлетает вверх при горении наполняющего ее пороха? Даже среди людей науки приходится нередко слышать, будто ракета летит вверх потому, что газами, которые вытекают из нее при горении пороха, она «отталкивается от воздуха». На самом же деле воздух не только не обусловливает движение ракеты, но даже мешает ей: в безвоздушном пространстве ракета должна лететь быстрее, чем в атмосфере. Истинная причина движения ракеты состоит в том, что, когда пороховые газы стремительно вытекают из нее вниз, сама трубка ракеты, по закону противодействия, отталкивается вверх. Весьма наглядно объяснены механические условия такого полета в предсмертной записке известного революционера-первомартовца Кибальчича, о котором у нас еще будет речь. Он писал:
Представьте себе, что мы имеем из листового железа цилиндр, закрытый герметически со всех сторон и только в нижнем дне своем имеющий отверстие. Расположим по оси этого цилиндра кусок прессованного пороха и зажжем его. При горении образуются газы, которые будут давить на всю внутреннюю поверхность цилиндра. Но давления на боковую поверхность цилиндра будут взаимно уравновешиваться, и только давление газов на закрытое дно цилиндра не будет уравновешено противоположным давлением, так как с противоположной стороны газы имеют свободный выход через отверстие[18]. Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов цилиндр должен подняться вверх.
Прилагаемые чертежи поясняют сказанное.
При горении пороха ракеты происходит, в сущности, то же, что и при выстреле из пушки. Снаряд летит вперед, пушка отталкивается назад. Если бы пушка висела в воздухе, ни на что не опираясь, она после выстрела устремилась бы назад со скоростью, которая во столько раз меньше скорости снаряда, во сколько раз он легче пушки. Ракета – нечто как раз противоположное пушке; в пушке назначение взрыва – выбросить снаряд, почти не сдвигая ствола пушки; в ракете же взрывные газы предназначаются именно для перемещения самого тела ракеты. Скорость и масса этих газов так значительны, что отдача заставляет тело ракеты быстро взлетать вверх. Все время, пока происходит горение пороха, скорость ракеты возрастает; к прежней скорости непрерывно, каждую секунду, прибавляется новая[19], да и сама ракета, теряя свои горючие запасы, уменьшает свою массу и потому заметнее поддается действию силы.
Рис. 18. Действие газов внутри ракеты (схема)
Опишу несложный прибор, действие которого объясняется тем же принципом. Прибор нетрудно устроить самому. Он наглядно убеждает в существовании силы, которая должна увлекать ракету в сторону противоположную истечению газов. Стеклянный сосуд (рис. 19) подвешен к подставке на нитях. В сосуд наливают воды и подставляют под него горелку. Когда вода закипит, пар будет струйкой выбиваться из сосуда, сам же сосуд при этом откачнется в обратную сторону. Но, очутившись вне пламени, реторта скоро охладится; вода перестанет кипеть, пар больше выбиваться не будет, и сосуд вернется в прежнее положение. Опять начнется кипение, опять реторта откачнется и т. д. Сосуд будет качаться, как маятник («тепловой маятник» Цельнера).
Ньютон, говорят, проектировал устройство самодвижущегося экипажа, устроенного подобным же образом, то есть, в сущности, то, что выполнено теперь строителями ракетного автомобиля.
Рис. 19. «Тепловой маятник» Цельнера
Однако вернемся к ракете и к идее межпланетного корабля. Когда порох в ракете весь выгорит, пустая ракетная трубка, пролетев еще некоторый путь по инерции, падает обратно на Землю: ее скорость недостаточна для окончательного преодоления силы тяжести. Но вообразите ракету в десятки метров длиною, снабдите ее таким запасом горючего, чтобы она успела накопить секундную скорость в 11 км (эта скорость, мы знаем, достаточна, чтобы безвозвратно покинуть Землю), тогда цепи земного тяготения будут разорваны. Способ странствовать в мировом пространстве найден!
Вот физические соображения, приводящие к мысли об устройстве летательного аппарата, способного двигаться не только в атмосфере, но и за ее пределами. Впервые идея подобного аппарата – правда, для земных, а не для межпланетных полетов – была высказана в 1881 г. известным русским революционером-изобретателем Н.И. Кибальчичем в проекте, составленном этим замечательным человеком незадолго до казни. Проект Кибальчича был высказан лишь в форме основной идеи. «Будучи на свободе, я не имел достаточно времени, чтобы разработать свой проект в подробностях и доказать его осуществимость математическими вычислениями», – писал он. Гораздо обстоятельнее разработана та же мысль недавно умершим физиком К.Э. Циолковским, создавшим идею настоящего межпланетного дирижабля-звездолета и обосновавшим его на строгом математическом расчете.