Страх физики. Сферический конь в вакууме - Лоуренс Краусс
Шрифт:
Интервал:
Закладка:
Но это же абсурд, потому что расстояния от Аспена до Солнца (в полдень) и от Кливленда до Солнца (тоже в полдень) различаются на два с половиной километра — 250 000 сантиметров — из-за того, что Аспен и Кливленд располагаются на разной высоте над уровнем моря. Чтобы такое точное расстояние имело физический смысл, мы должны очень точно указать точку на поверхности Земли, в которой мы производим измерения. Даже если мы будем измерять расстояние между центром Земли и центром Солнца (самый разумный выбор), то это подразумевает, что мы предварительно измерили диаметры Земли и Солнца с точностью до сантиметра, не говоря уже о том, что произвести на практике измерения астрономических расстояний с такой точностью крайне проблематично, если вообще возможно.
Очевидно, что, написав число 14 960 000 000 000, мы на самом деле имели в виду приблизительное, а не точное значение. Но с какой точностью мы на самом деле знаем расстояние от Земли до Солнца? Подобного вопроса не возникает, когда мы записываем число в виде 1,4960∙1013 см. Принято считать, что в экспоненциальной записи в мантиссе сохраняются только достоверные цифры, и данная запись говорит о том, что реальное расстояние лежит в пределах между 1,49595∙1013 см и 1,49605∙1013 см. Если бы расстояние было известно нам с вдесятеро лучшей точностью, мы записали бы его в виде: 1,49600∙1013 см.
Таким образом, существует огромная разница между 1,4960∙1013 см и 14 960 000 000 000 см. Чтобы представить, насколько она огромна, подсчитаем абсолютную погрешность приведенного числа. Эта погрешность составляет 0,0001∙1013 см — один миллиард сантиметров, или десять тысяч километров, — почти диаметр Земли!
«И это физики называют точным результатом?» — спросите вы. Да. Несмотря на то что абсолютная величина погрешности — миллиард сантиметров — выглядит чудовищной, она составляет меньше одной десятитысячной расстояния от Земли до Солнца. Если бы вы с такой же точностью измерили свой рост, вы узнали бы его с точностью до двух десятых долей миллиметра.
Красота записи 1,4960∙1013 состоит еще и в том, что множитель 1013 сразу же задает «масштаб» числа, а мантисса 1,4960 указывает на его точность. Чем больше десятичных разрядов содержит мантисса, тем точнее мы знаем физическую величину. Глядя на число, записанное в экспоненциальной форме, вы сразу же понимаете, чем можно пренебречь. Масштаб 1013 см говорит, что физические эффекты, проявляющиеся на масштабах в несколько сантиметров, метров, километров и даже тысяч километров, скорее всего, можно не учитывать. А как я говорил в предыдущей главе, самое главное в физике — это понимать, чем можно, а чем нельзя пренебречь.
До сих пор я игнорировал, возможно, наиболее важный факт, который придает числу 1,4960∙1013 см физический смысл. Это записанное после него сокращение «см». Без этих «см» мы бы не знали, к какой физической величине относится число, а сакраментальное «см» говорит о том, что это расстояние. Данная спецификация называется размерностью физической величины. Размерность связывает абстрактные математические числа с физическим миром реальных явлений. Сантиметры, дюймы, километры, световые года — это все размерности длины, которые могут использоваться для измерения расстояний.
Вероятно, самым удивительным свойством окружающего мира, позволяющим упростить его картину, является то, что в природе существуют только три независимые размерные величины: длина, время и масса[6]. Размерности всех остальных величин могут быть выражены через комбинацию трех основных. Неважно, измеряете ли вы скорость в милях в час, метрах в секунду или стадиях в неделю, — все это лишь различные способы выражения расстояния, деленного на время.
Это свойство имеет замечательные последствия. Из-за того что в природе существуют только три независимые размерные величины, количество комбинаций, которые можно из них сконструировать, ограничено. Это означает, что каждая физическая величина связана с любой другой физической величиной некоторым простым способом, и это существенно ограничивает количество различных математических соотношений, возможных в физике. Не побоюсь утверждать, что не существует более важного инструмента, используемого физиками, чем размерности физических величин. Размерности не только облегчают запоминание уравнений, но и существенно упрощают картину физического мира. Как я покажу позже, анализ размерностей дает важный ориентир для разумной интерпретации той информации, которую мы получаем от наших органов чувств или измерительных приборов. Описывая физические величины, мы оперируем их размерностями.
Когда мы анализировали законы масштабирования сферического коня, мы работали с соотношениями размерностей длины и массы. Например, нам было важно установить, как соотносится изменение объема коня с изменением его линейных размеров. Анализируя размерности, можно пойти дальше, чтобы понять, как оценить объем предмета произвольной формы. Как я уже говорил, неважно, какими единицами мы пользуемся для измерения объема: кубическими дюймами, кубическими сантиметрами или кубическими футами, важно лишь, что все эти единицы кубические. Единицы, в которых измеряется объем, имеют размерность кубической длины, то есть [длина] х [длина] х [длина]. Таким образом, объем любого объекта может быть оценен путем выбора некоторой характеризующей этот объект длины d с последующим возведением ее в куб: d3. Обычно этого достаточно, чтобы оценить порядок величины объема. Например, объем сферы задается выражением V = π/6∙d3 ≈ ½∙d3, где d — ее диаметр.
А вот пример простейшего анализа размерностей. Предположим, что вы забыли, что следует сделать, чтобы найти пройденное телом расстояние: умножить скорость на время или разделить. Посмотрев на размерности входящих в формулу величин, вы мгновенно получите правильный ответ. Размерность скорости — [метр]/[секунда], размерность длины — [метр]. Для того чтобы получить расстояние, то есть [метр], необходимо [метр]/[секунда] умножить на [секунда], а именно скорость умножить на время. Поколение за поколением студентов безуспешно зубрит сложные формулы, вместо того чтобы просто составить входящие в них физические величины так, чтобы размерность справа от знака равенства была такой же, как и размерность слева.
Следует обратить особое внимание на то, что анализ размерности никоим образом не гарантирует, что вы получите правильный ответ, но он гарантированно подскажет, когда вы ошибаетесь. Он как слега при переходе через болото: не факт, что, пользуясь ею, вы не заблудитесь, но зато наверняка не утонете.
Говорят, что фортуна благоволит подготовленному уму. Ничто не может быть более справедливым в отношении физики, и анализ размерности поможет подготовить ум к неожиданностям. Результат простого анализа размерностей часто оказывается настолько потрясающим, что может показаться магией. Для большей убедительности я приведу пример из современной физики, в котором известное и неизвестное оказались очень тесно переплетены. В этой истории анализ размерностей помог прийти к пониманию одной из четырех фундаментальных сил природы — сильного взаимодействия, которое связывает кварки в протоны и нейтроны, являющиеся основными компонентами атомных ядер. При первом чтении апелляция к размерностям может показаться вам не очень понятной, но не беспокойтесь. Я привожу здесь эту историю, потому что она позволяет увидеть, насколько эффективно анализ размерностей способен подтолкнуть физическую интуицию. В моем рассказе красота вывода более важна, чем полученный результат.